A flavor superconductor from string theory

Johanna Erdmenger

Max Planck-Institut für Physik, München

Holographic Superconductor from charged scalar in Einstein-Maxwell gravity

Gubser; Hartnoll, Herzog, Horowitz

cf. Chris Herzog's talk

Holographic Superconductor from charged scalar in Einstein-Maxwell gravity Gubser; Hartnoll, Herzog, Horowitz cf. Chris Herzog's talk

p-wave superconductor (current dual to gauge field condensing)

Gubser, Pufu

Holographic Superconductor from charged scalar in Einstein-Maxwell gravityGubser; Hartnoll, Herzog, Horowitzcf. Chris Herzog's talk

p-wave superconductor (current dual to gauge field condensing)

Gubser, Pufu

 $(AdS_4 \text{ examples})$

Is there a holographic superconductor...

Is there a holographic superconductor...

1) for which the field theory is explicitly known?

Is there a holographic superconductor...

1) for which the field theory is explicitly known?

2) within ten-dimensional type IIB supergravity?

A holographic superconductor with field theory in 3+1 dimensions for which

A holographic superconductor with field theory in 3+1 dimensions for which

1. the dual field theory is explicitly known

A holographic superconductor with field theory in 3+1 dimensions for which

- 1. the dual field theory is explicitly known
- 2. there is a qualitative ten-dimensional string theory picture of condensation

Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864

p-wave superconductor

'adding flavor to gauge/gravity duality'

cf. Andreas Karch's talk

'adding flavor to gauge/gravity duality'

cf. Andreas Karch's talk

 $\mathcal{N} = 4$ theory: all fields in adjoint rep of gauge group

 $\phi \to e^{i\Lambda} \phi \, e^{-i\Lambda}$

'adding flavor to gauge/gravity duality'

cf. Andreas Karch's talk

 $\mathcal{N}=4$ theory: all fields in adjoint rep of gauge group $\phi \rightarrow e^{i\Lambda}\phi \, e^{-i\Lambda}$

QCD: quarks transform in fundamental rep of gauge group $q \rightarrow e^{i\Lambda}q$

'adding flavor to gauge/gravity duality'

cf. Andreas Karch's talk

 $\mathcal{N}=4$ theory: all fields in adjoint rep of gauge group $\phi \rightarrow e^{i\Lambda}\phi \, e^{-i\Lambda}$

QCD: quarks transform in fundamental rep of gauge group $q \rightarrow e^{i\Lambda}q$

Brane probes added on gravity side \Rightarrow fundamental d.o.f. in the dual field theory

Additional hyperplanes within $AdS_5 \times S^5$ or deformed version thereof

Brane embeddings in confining 10d backgrounds \Rightarrow

Chiral symmetry breaking

Brane embeddings in confining 10d backgrounds \Rightarrow

Chiral symmetry breaking

Brane probes in AdS black hole geometry \Rightarrow

Quarks added to finite temperature field theory

Brane embeddings in confining 10d backgrounds \Rightarrow Chiral symmetry breaking

Brane probes in AdS black hole geometry \Rightarrow Quarks added to finite temperature field theory

Chemical potentials for baryon, isospin density: From non-trivial A_t on gravity side

Brane embeddings in confining 10d backgrounds \Rightarrow Chiral symmetry breaking

Brane probes in AdS black hole geometry \Rightarrow Quarks added to finite temperature field theory

Chemical potentials for baryon, isospin density: From non-trivial A_t on gravity side

 \Rightarrow Rich phase structure

- 1. Adding Flavor to Gauge/Gravity Duality
- 2. Holographic Quarks at finite Temperature and Density
- 3. Superconductivity

String theory origin of AdS/CFT correspondence

D3 branes in 10d

↓ Low-energy limit

 $\mathcal{N} = 4$ SUSY SU(N) gauge theory in four dimensions $(N \to \infty)$

Supergravity on $AdS_5 \times S^5$

Adding D7 brane probe:

	0	1	2	3	4	5	6	7	8	9
D3	X	X	Х	X						
D7	X	X	Х	X	Х	X	Х	Х		

Quarks (fundamental fields) from brane probes

 $N \rightarrow \infty$ (standard Maldacena limit), N_f small (probe approximation)

duality acts twice:

 $\mathcal{N} = 4$ SU(N) Super Yang-Mills theory
coupled toIIB supergravity on $AdS_5 \times S^5$
+
 $\mathcal{N} = 2$ fundamental hypermultiplet $\mathcal{N} = 2$ fundamental hypermultipletProbe brane action on $AdS_5 \times S^3$
Probe brane action on $AdS_5 \times S^3$ Karch, Katz 2002Dirac-Born-Infeld action

DBI (Dirac-Born-Infeld) action:

$$S_{DBI} = -T_7 \int d^8 \xi \, \mathrm{tr} \sqrt{\det(-P[G] + 2\pi\alpha' F)}$$

Contributions of order N_f/N_c

DBI (Dirac-Born-Infeld) action:

$$S_{DBI} = -T_7 \int d^8 \xi \, \mathrm{tr} \sqrt{\det(-P[G] + 2\pi\alpha' F)}$$

Contributions of order N_f/N_c

Field theory involves fundamental fermions and scalars

 $\mathcal{N}=4$ Super Yang-Mills theory at finite temperature is dual to AdS black hole Witten 1998

$$ds^{2} = \frac{1}{2} \left(\frac{\varrho}{R}\right)^{2} \left(-\frac{f^{2}}{\tilde{f}} dt^{2} + \tilde{f} d\vec{x}^{2}\right) + \left(\frac{R}{\varrho}\right)^{2} \left(d\varrho^{2} + \varrho^{2} d\Omega_{5}^{2}\right)$$

$$f(\varrho) = 1 - \frac{\varrho_H^4}{\varrho^4}, \quad \tilde{f}(\varrho) = 1 + \frac{\varrho_H^4}{\varrho^4}$$

Temperature and horizon related by

$$T = \frac{\varrho_H}{\pi R^2}$$

R: AdS radius

For $\rho_H \to 0$, metric of $AdS_5 \times S^5$ is recovered.

First order phase transition

Babington, J.E., Evans, Guralnik, Kirsch Mateos, Myers, Thomson

Babington, J.E., Evans, Guralnik, Kirsch 0306018

Phase transition at $m_c \approx 0.92$ (1st order)

Condensate $c \equiv \langle \bar{\psi} \psi \rangle$ vs. quark mass m m in units of T

Standard procedure in D3/D7:

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: $\delta w(x,\rho) = f(\rho)e^{i(\vec{k}\cdot\vec{x}-\omega t)}$, $M^2 = -k^2$

Standard procedure in D3/D7:

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: $\delta w(x,\rho) = f(\rho)e^{i(\vec{k}\cdot\vec{x}-\omega t)}$, $M^2 = -k^2$

For black hole embeddings, ω develops negative imaginary part

 \Rightarrow damping \Rightarrow decay width

Standard procedure in D3/D7:

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: $\delta w(x,\rho) = f(\rho)e^{i(\vec{k}\cdot\vec{x}-\omega t)}$, $M^2 = -k^2$

For black hole embeddings, ω develops negative imaginary part

 \Rightarrow damping \Rightarrow decay width

Identify mesons with resonances in spectral function Spectral function determined by poles of retarded Green function Quasinormal modes

Mateos, Myers, Matsuura et al

Baryon density n_B and U(1) chemical potential μ from VEV for gauge field time component:

$$\bar{A}_0(\rho) \sim \mu + \frac{\tilde{d}}{\rho^2}, \qquad \tilde{d} = \frac{2^{5/2}}{N_f \sqrt{\lambda} T^3} n_B$$

At finite baryon density, all embeddings are black hole embeddings

0.2

0.4

 T/\bar{M}

Sin, Yogendran et al; Mateos, Myers et al; Karch, O'Bannon; ...

0.6

0.8

1

- Embed two coincident D7-branes into AdS-Schwarzschild gauge fields $A_{\mu} = A^a_{\mu} \sigma^a \in u(2) = u(1)_B \oplus su(2)_I$
- Dynamics of Flavour degrees is described by non-abelian DBI action
- Finite isospin density: $A_0^3 \neq 0 \Rightarrow$ Explicit breaking to $u(1)_3$

Field theory described:

 $\mathcal{N} = 4$ Super Yang-Mills plus two flavors of fundamental matter

at finite temperature and finite isospin density

ρ meson condensation

J.E., Kaminski, Kerner, Rust 0807.2663

Above a critical isospin density, a new phase forms

J.E., Kaminski, Kerner, Rust 0807.2663

Above a critical isospin density, a new phase forms

New phase is unstable

Quasinormal modes

Instability:

There is a new solution to the equations of motion

with non-zero vev for $A_3^1\sigma^1\,$ in addition to the non-zero $A_0^3\sigma^3\,$

There is a new solution to the equations of motion with non-zero vev for $A_3^1\sigma^1$ in addition to the non-zero $A_0^3\sigma^3$

$$A_0^3 = \mu - \frac{\tilde{d}_0^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots, \qquad A_3^1 = -\frac{\tilde{d}_1^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots$$

There is a new solution to the equations of motion with non-zero vev for $A_3^1 \sigma^1$ in addition to the non-zero $A_0^3 \sigma^3$

$$A_0^3 = \mu - \frac{\tilde{d}_0^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots, \qquad A_3^1 = -\frac{\tilde{d}_1^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots$$

Pole structure:

Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864

The new ground state has properties known from superconductors:

- infinite DC conductivity, gap in the AC conductivity
- second order phase transition, critical exponent of 1/2 (mean field)
- a remnant of the Meissner–Ochsenfeld effect

Order parameter $\tilde{d}_3^1 \propto \langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle \neq 0$ Dual to $A_3^1 \sigma^1$ in gravity theory Order parameter $\tilde{d}_3^1 \propto \langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle \neq 0$ Dual to $A_3^1 \sigma^1$ in gravity theory

Spontaneous breaking of (global) $U(1)_3$

Flavor superfluid

Order parameter $\tilde{d}_3^1 \propto \langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle \neq 0$ Dual to $A_3^1 \sigma^1$ in gravity theory

Spontaneous breaking of (global) $U(1)_3$

Flavor superfluid

 $U(1)_3$ may be weakly gauged

Order parameter: p wave condensate

Red: Vanishing quark mass; Black: Finite quark mass, $\mu/M_q=3$ Blue: Fit displaying critical exponent 1/2

Flavor contribution to Grand potential vs. temperature

Flavor contribution to heat capacity

Frequency-dependent conductivity

$$\mathfrak{w} = \omega/(2\pi T)$$

 T/T_c : Black: ∞ , Red: 1, Orange: T = 0.5, Brown: T = 0.28.

(Vanishing quark mass)

Meissner effect

Lower phase: magnetic field and condensate coexist

Upper phase: condensate vanishes

Evaluation non-trivial in presence of both σ^0 , σ^1

Two evaluation methods:

- 1) Expansion to fourth order
- 2) Simplification: Omitting commutators of Pauli matrices Modified prescription for symmetrized trace

Allows for all-order calculation of the non-abelian DBI

Error of order $1/N_f$

cf. Myers, Constable, Tafjord 1999

String picture

- Strings stretched between D7 branes and horizon induce a charge near the horizon
- System unstable above a critical charge density
- Horizon strings recombine to D7 D7 strings
- D7 D7 strings propagate into the bulk, balancing flavorelectric and gravitational forces
- D7 D7 strings distribute isospin charge into the bulk \rightarrow superconducting condensate

Charge distributions

- A holographic superconductor for which the field theory is explicitly known
- First explicit example of superconductivity (superfluidity) from 10d action
- Embedding of two coincident D7 branes \Rightarrow Finite isospin density

- A holographic superconductor for which the field theory is explicitly known
- First explicit example of superconductivity (superfluidity) from 10d action
- Embedding of two coincident D7 branes \Rightarrow Finite isospin density
- Outlook: Fermions
- Outlook: Space-time dependent solutions
 Spin density waves (w. E. Caceres)