Horizon formation and far-from-equilibrium dynamics in strongly coupled plasma

Laurence G. Yaffe
University of Washington
based on work with Paul Chesler: arXiv:0906.4426, arXiv:0906.4426

Thermal plasma physics from AdS/CFT

- Equilibrium ($\mathcal{N}=4$ SYM)
- equation of state
- correlation lengths, screening
- flavor physics
- finite volume
- confinement/deconfinement
- chemical potentials
- rotation

SUGRA mode	$\mathcal{J}_{R_{y}}^{C R_{t}}$	SYM operator	mass $/ \pi T$
G_{00}	0_{+}^{++}	T_{00}	2.3361
a	0_{-}^{+-}	$\operatorname{tr} E \cdot B$	3.4041
$G_{i j}$	2^{++}	$T_{i j}$	3.4041
ϕ	0_{+}^{++}	\mathcal{L}	3.4041
$G_{i 0}$	1^{+-}	$T_{i 0}$	4.3217
$B_{i j}$	0_{-}^{-+}	$\mathcal{O}_{i j}$	5.1085
$C_{i j}$	0_{+}^{--}	\mathcal{O}_{30}	5.1085
$B_{i 0}$	1^{--}	$\mathcal{O}_{i 0}$	6.6537
$C_{i 0}$	1^{-+}	$\mathcal{O}_{3 j}$	6.6537
G_{a}^{a}	0_{+}^{++}	$\operatorname{tr} F^{4}$	7.4116

Thermal plasma physics from AdS/CFT

- Equilibrium ($\mathcal{N}=4$ SYM)
- equation of state
- correlation lengths, screening
- flavor physics
- finite volume
- confinement/deconfinement
- chemical potentials
- rotation
- Nearequilibrium
- viscosity, diffusion
- quasi-normal modes, late time expansions
- photo-emission
- second-order transport coefficients
- non-linear conductivity
(real-time response, Minkowski signature)

SUGRA mode	$\mathcal{J}_{R_{y}}^{C R_{t}}$	SYM operator	mass $/ \pi T$
G_{00}	0_{+}^{++}	T_{00}	2.3361
a	0_{-}^{+-}	$\operatorname{tr} E \cdot B$	3.4041
$G_{i j}$	2^{++}	$T_{i j}$	3.4041
ϕ	0_{+}^{++}	\mathcal{L}	3.4041
$G_{i 0}$	1^{+-}	$T_{i 0}$	4.3217
$B_{i j}$	0_{-}^{-+}	$\mathcal{O}_{i j}$	5.1085
$C_{i j}$	0_{+}^{--}	\mathcal{O}_{30}	5.1085
$B_{i 0}$	1^{--}	$\mathcal{O}_{i 0}$	6.6537
$C_{i 0}$	1^{-+}	$\mathcal{O}_{3 j}$	6.6537
G_{a}^{a}	0_{+}^{++}	$\operatorname{tr} F^{4}$	7.4116

Thermal plasma physics from AdS/CFT

- Probe dynamics (classical string dynamics)
- heavy quark drag
- wakes, Brownian motion
- heavy meson stability, dispersion
- light quark jets

Thermal plasma physics from AdS/CFT

- Probe dynamics (classical string dynamics)
- heavy quark drag
- wakes, Brownian motion
- heavy meson stability, dispersion
- light quark jets
- Far-from-equilibrium dynamics ???

- plasma formation
- early thermalization
- turbulence

Non-equilibrium initial states

- Specify complete density matrix $\boldsymbol{\rho}$? Ugh!
- Pick geometry on initial Cauchy surface? Ugh!
- Want "operational" description:

\therefore Specify time-dependent external fields
\Rightarrow time-dependent dynamics
\Rightarrow external work done on system

Anisotropy dynamics

- Metric $g^{\mu \nu}=$ external field coupling to stress-energy $T^{\mu \nu}$
\therefore time-dependent geometry \Rightarrow non-equilibrium $\left\langle T^{\mu \nu}\right\rangle$
- Case I: perfect spatial homogeneity, arbitrary anisotropy

$$
d s^{2}=-d t^{2}+e^{f(t)}\left(d x^{2}+d y^{2}\right)+e^{-2 f(t)} d z^{2}
$$

Gravitational description

- Solve 5-d Einstein equations with time-dependent boundary condition $G^{A B} \rightarrow g^{\mu \nu}$ and simple initial condition (AdS or AdS-BH)
- Extract $\left\langle T^{\mu \nu}\right\rangle$ from sub-leading near-boundary asymptotics
- Note:
- time-dependent boundary conditions produce dynamic event horizon
- "Teleological" event horizon growth occurs outside causal future of boundary time dependence

\Rightarrow event horizon area (pulled back to boundary) cannot represent entropy in non-equilibrium setting

Practical issues (I)

- Coordinate choice:
\mathbf{X} Bad: Fefferman-Graham or similar (r, t, \boldsymbol{x})
\checkmark Good: Incoming Eddington-Finkelstein

$$
d s^{2}=-A(v, r) d v^{2}+2 d v d r+\Sigma(v, r)^{2}\left[e^{B(v, r)}\left(d x^{2}+d y^{2}\right)+e^{-2 B(v, r)} d z^{2}\right]
$$

- $v=$ const. on incoming (radial) null geodesics
- $d v / d r=\frac{1}{2} A$ on outgoing (radial) null geodesics
- $g^{\prime} \equiv \partial_{r} g=$ directional derivative along incoming null geodesics,
- $\dot{g} \equiv \partial_{v} g+\frac{1}{2} A \partial_{r} g=$ directional derivative along outgoing null geodesics
- Boundary conditions as $r \rightarrow \infty$:
- Case I: $A \rightarrow r^{2}, \quad \Sigma \rightarrow r, \quad B \rightarrow f(v)$
- Case II: $A \rightarrow r^{2}, \quad \Sigma \rightarrow r \tau^{1 / 3}, \quad B \rightarrow-2 / 3 \ln \tau+\gamma(\tau)$

Einstein equations

- $R_{M N}-\frac{1}{2} G_{M N}(R+2 \Lambda)=0$
- Non-trivial components: $v v, r r, v r, z z, x x+y y$
$\Rightarrow 5$ equations, 3 unknown functions (A, B, Σ)
- Need to separate dynamics from constraints
$\Rightarrow \quad 0=\Sigma(\dot{\Sigma})^{\prime}+2 \Sigma^{\prime} \dot{\Sigma}-2 \Sigma^{2}$,

$$
0=\Sigma(\dot{B})^{\prime}+\frac{3}{2}\left(\Sigma^{\prime} \dot{B}+B^{\prime} \dot{\Sigma}\right),
$$

$$
0=A^{\prime \prime}+3 B^{\prime} \dot{B}-12 \Sigma^{\prime} \dot{\Sigma} / \Sigma^{2}+4,
$$

$$
0=\ddot{\Sigma}+\frac{1}{2}\left(\dot{B}^{2} \Sigma-A^{\prime} \dot{\Sigma}\right), \longleftarrow \text { boundary value constraint }
$$

$$
0=\Sigma^{\prime \prime}+\frac{1}{2} B^{\prime 2} \Sigma, \longleftarrow \text { initial value constraint }
$$

- N.B.: $A=$ non-dynamical auxillary field

Practical issues (II)

- Need to solve for "velocities," $\partial_{v} B, \partial_{v} \Sigma$, and auxillary field A

$$
\begin{aligned}
\dot{\Sigma}(r, v) & =-\frac{2}{\Sigma(r, v)^{2}} \int_{r} d w \Sigma(w, v)^{3} \\
\dot{B}(r, v) & =-\frac{3}{\Sigma(r, v)^{3 / 2}} \int_{r} d w \frac{B^{\prime}(w, v)}{\Sigma(w, v)^{3 / 2}} \int_{w} d \bar{w} \Sigma(\bar{w}, v)^{3}
\end{aligned}
$$

- Discretize $r \rightarrow \infty$ system of coupled ODEs
- Must treat near-boundary behavior accurately
\Rightarrow match discretized numerics to large r asymptotics

Practical issues (III)

- Must remove residual reparameterize freedom: $r \rightarrow r+\alpha(v)$

X Bad: fix coordinate location of event horizon
\checkmark Good: fix $a_{1}=0$

- Must excise region surrounding singularity: $r<r_{\min }(v)<r_{\text {horizon }}(v)$
- Must choose specific boundary time dependence

$$
\begin{array}{ll}
\mathrm{Ex}: f(v)=\frac{1}{2} c[1-\tanh (v / \tau)] \quad & \gamma(\tau)=c h\left(\tau-\tau_{0}\right)^{6} e^{-1 / h\left(\tau-\tau_{0}\right)} \\
& h(\delta \tau)=1-(\delta \tau)^{2} / \Delta^{2}
\end{array}
$$

Case I: Results

Case I: Horizon area

Case I: Isotropization time

$\|c\|$	1	1.5	2	2.5	3	3.5	4
τT	0.23	0.31	0.41	0.52	0.65	0.79	0.94
$\tau_{\text {iso }} T$	0.67	0.68	0.71	0.92	1.2	1.5	1.8
$\tau_{\text {iso }} / \tau$	3.0	2.2	1.7	1.8	1.8	1.9	1.9

$$
\begin{aligned}
T & =\text { final equilibrium temperature } \\
\tau_{\text {iso }} & =\text { isotropization time } \\
\tau & =\text { plasma creation time scale }
\end{aligned}
$$

Case II: Results

$c=+1$

$$
\begin{aligned}
& \tau_{i}=0.25 \\
& \tau_{f}=2.25
\end{aligned}
$$

Case II: Hydro comparison

$$
\begin{array}{rll}
\mathcal{E} & =\frac{3 \pi^{4} \Lambda^{4}}{4(\Lambda \tau)^{4 / 3}}\left[1-\frac{2 C_{1}}{(\Lambda \tau)^{2 / 3}}+\frac{C_{2}}{(\Lambda \tau)^{4 / 3}}\right], & C_{1}=\frac{1}{3 \pi} \\
\mathcal{P}_{\perp} & =\frac{\pi^{4} \Lambda^{4}}{4(\Lambda \tau)^{4 / 3}}\left[1-\frac{C_{2}}{3(\Lambda \tau)^{4 / 3}}\right], & C_{2}=\frac{2+\ln 2}{18 \pi^{2}} \\
\mathcal{P}_{\|}=\frac{\pi^{4} \Lambda^{4}}{4(\Lambda \tau)^{4 / 3}}\left[1-\frac{2 C_{1}}{(\Lambda \tau)^{2 / 3}}+\frac{5 C_{2}}{3(\Lambda \tau)^{4 / 3}}\right] & \\
A_{\mathrm{EH}}=\pi^{3} \Lambda^{2}\left[1-\frac{1}{2 \pi(\Lambda \tau)^{2 / 3}}+\frac{6+\pi+6 \ln 2}{24 \pi^{2}(\Lambda \tau)^{4 / 3}}\right] & \\
A_{\mathrm{AH}}=\pi^{3} \Lambda^{2}\left[1-\frac{1}{2 \pi(\Lambda \tau)^{2 / 3}}+\frac{2+\pi+\ln 2}{24 \pi^{2}(\Lambda \tau)^{4 / 3}}\right], &
\end{array}
$$

Janik, Peschanski; Kinoshita, Mukohyama, Nakamura; Booth, Heller, Spalinski

Case II: Relaxation time

c	-2	$-3 / 2$	-1	$-1 / 2$	$-1 / 4$	$1 / 4$	$1 / 2$	1	$3 / 2$	2	
τ_{*}	2.2	2.3	2.4	2.7	3.1	3.1	2.7	2.4	2.3	2.2	
T_{*}	0.93	0.77	0.60	0.40	0.27	0.27	0.41	0.62	0.80	0.97	
$\Lambda \tau_{*}$	3.1	2.5	1.9	1.2	0.87	0.89	1.3	1.9	2.6	3.3	
$\left(\tau_{*}-\tau_{i}\right) T_{*}$	2.0	1.7	1.4	1.1	0.84	0.85	1.1	1.5	1.8	2.1	
$\left(\tau_{*}-\tau_{f}\right) T_{*}$	0.00	0.05	0.11	0.19	0.24	0.24	0.20	0.11	0.04	0.00	
$\frac{\mathcal{P}_{\perp}\left(\tau_{f}\right)-P_{\\| \mid}\left(\tau_{f}\right)}{\mathcal{E}\left(\tau_{f}\right)}$	0.06	-0.03	-0.22	-0.56	-1.1	1.6	0.91	0.47	0.24	0.13	

$\tau_{*}=$ hydro onset time
$T_{*}=$ initial hydro temperature
$c \rightarrow \infty: \tau_{*} \rightarrow \tau_{\mathrm{f}}, T_{*} \rightarrow \infty$, "instantaneous" relaxation to local equilibrium
$c \rightarrow 0: \quad \tau_{*} \sim \Delta / \sqrt{ } c, \tau_{*} T_{*} \sim O(1)$
$\Lambda \tau_{*} \geq 0.9$ always \Rightarrow limit of validity of hydro controlled by relaxation of non-hydro modes, not by growth of higher-order viscous terms

Open questions

- Sensitivity to choice of boundary time dependence?
- wider range of amplitudes
- periodic forcing
- Precise connection between entropy \& apparent horizon area?
- ambiguities in definition of non-equilibrium entropy
- foliation dependence of apparent horizon area
- Feasibility of evolving anisotropic \& inhomogeneous geometries?
- non-boost invariant colliding shocks
- finite expanding fluids
- turbulent driven systems
- Relevance for heavy ion collisions?

