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Thermal plasma physics from AdS/CFT

• Equilibrium (N = 4 SYM)             (static, Euclidean signature)

• equation of state

• correlation lengths, screening

• flavor physics

• finite volume
• confinement/deconfinement
• chemical potentials
• rotation

SUGRA mode JCRt
Ry
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+ T00 2.3361

a 0+−
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Gij 2++ Tij 3.4041
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Gi0 1+− Ti0 4.3217
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Cij 0−−+ O30 5.1085

Bi0 1−− Oi0 6.6537

Ci0 1−+ O3j 6.6537

Ga
a 0++

+ trF 4 7.4116

mode Nf = 2 QCD N =4 SYM

mgap/πT 1.25(2) 2.34

mD/πT 1.80(4) 3.40
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Figure 3: Quasinormal spectrum of gravitational fluctuations in the shear channel, shown in the
plane of complex ≡ ω/2πT , for spatial momentum ≡ q/2πT = 1. The quasinormal frequencies
coincide with poles of G1(ω, q), as explained in the text. As decreases, all poles stay at a finite
distance away from the real axis, except for the one marked with a large dot. This pole is purely
imaginary and approaches the origin in the limit → 0. The presence of this special quasinormal
frequency is a manifestation of the diffusive relaxation of transverse momentum density fluctuations
in the dual N = 4 SYM theory.

where C1 is a normalization constant. Expanding for small u, we find the connection coeffi-

cients

A(1) = 1 +
i 2

2
+ O( 2, 2, ) , B(1) =

i( 2 − 2)

2
+ O( 2, 2, ) . (4.31)

The Dirichlet condition Z1(u=0) = 0 gives the hydrodynamic quasinormal frequency =

−i 2/2 + O( 3). It is interpreted as the dispersion relation for the shear mode,

ω = −iγηq
2 + O(q3) , (4.32)

where γη = 1/4πT . For the function G1(ω, q) in this approximation we find

G1(ω, q) =
πN2

c T 3(ω2 − q2)

4(iω − q2/4πT )
, (4.33)

in agreement with the result obtained earlier in [15]. The quasinormal spectrum for frequen-

cies beyond the hydrodynamic limit was obtained in [11] using a slightly different approach.

4.2.3 Sound channel

According to the discussion in Section 3, equations obeyed by the components of the metric

Htt = uhtt/f(πTR)2, Htz = uhtz/(πTR)2, Hzz = uhzz/(πTR)2, Haa = u(hxx + hyy)/(πTR)2

form a closed system of equations (in the radial gauge huA = 0). These equations are lengthy,

and we present them in Appendix A. Using the equations of motion (A.1) – (A.4) one can

show that the gauge-invariant combination

Z2(u) ≡ 4 Htz + 2 2Hzz + Haa
[

2(2 − f) − 2
]

+ 2 2fHtt (4.34)
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• Near-equilibrium                             (real-time response, Minkowski signature)

• viscosity, diffusion

• quasi-normal modes, late time expansions

• photo-emission

• second-order transport coefficients

• non-linear conductivity



Thermal plasma physics from AdS/CFT

• Probe dynamics             (classical string dynamics)

• heavy quark drag

• wakes, Brownian motion

• heavy meson stability, dispersion

• light quark jets
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initial value problems with non-trivial 
time-dependent bulk geometry

• Far-from-equilibrium dynamics ???

• plasma formation

• early thermalization

• turbulence



Non-equilibrium initial states

• Specify complete density matrix ρ ?   Ugh!

• Pick geometry on initial Cauchy surface ?     Ugh!

• Want “operational” description:

∴ Specify time-dependent external fields

➡ time-dependent dynamics

➡ external work done on system

?
t << 0

equilibrium
t ≈ 0
shake 

t > 0
evolve

simple initial state excitation

ext. field

time

non-equilibrium response



Anisotropy dynamics
• Metric gµμν	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  = external field coupling to stress-energy Tµμν

∴ time-dependent geometry ➡ non-equilibrium〈Tµμν〉

• Case I:  perfect spatial homogeneity, arbitrary anisotropy

• Case II:  boost invariance & transverse homogeneity

ds2 = −dt2 + ef(t)(dx2 + dy2) + e−2f(t) dz2

〈Tµν(t,x)〉 =





ε(t)
p⊥(t)

p⊥(t)
p‖(t)
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a different physical description. For large Nc SYM,
gauge/gravity duality provides an alternative picture in-
volving black hole formation in five dimensions. As we
discuss in Section II, the gravitational dual will involve
a 5d curved spacetime with a 4d boundary which has a
time dependent geometry. The boundary geometry cor-
responds to the spacetime geometry of the SYM field
theory. A time-dependent deformation in the 4d bound-
ary geometry will produce gravitational radiation which
propagates into the fifth dimension. This radiation will
necessarily produce a black hole [21]. It is natural that
the gravitational description of plasma formation and re-
laxation involves horizon formation, since at late times
the system will be in a near-equilibrium state with non-
zero entropy.

The presence of a black hole acts as an absorber of
gravitational radiation and therefore, after the produc-
tion of gravitational radiation on the boundary ceases,
the 5d geometry will relax onto a smooth and slowly
varying form. This relaxation is dual to the relaxation
of non-hydrodynamic degrees of freedom in the quantum
field theory [9]. Therefore, by studying the evolution of
the 5d black hole geometry, one can gain insight into the
creation and relaxation SYM plasma.

For simplicity, in this paper we limit attention to 4d ge-
ometries which have two dimensional spatial homogene-
ity and O(2) rotation invariance in the x⊥ ≡ {x1, x2}
directions, and which are invariant under boosts in the
x‖ ≡ x3 direction. As we discuss in Section II, this
reduces the gravitational dynamics to a system of two-
dimensional PDEs, which we solve numerically. Besides
making the gravitational calculation simpler, these as-
sumptions serve an additional purpose. With these sym-
metries, the late time asymptotics of the 5d geometry
(and the corresponding asymptotics of the stress tensor)
are known analytically [24, 25, 26]. We will therefore be
able to compare directly our numerical results, valid at
all times, to the known late time asymptotics.

Boost invariance implies that the natural coordinates
to use are proper time τ and rapidity y (with x0 ≡
τ cosh y and x‖ ≡ τ sinh y). In these coordinates, the
metric of 4d Minkowski space (in the interior of the τ = 0
cone) is ds2 = −dτ2+dx2

⊥+τ2 dy2. A deformation of the
geometry, respecting the above symmetry constraints, in-
duced by a time-dependent shear may be written in the
form

ds2 = −dτ2 + eγ(τ) dx2
⊥ + τ2 e−2γ(τ) dy2 . (1)

The function γ(τ) characterizes the time-dependent
shear; neglecting 4d gravity, γ(τ) is a function one is
free to choose arbitrarily. For this study, we chose

γ(τ) = cΘ
(
1− (τ−τ0)2/∆2

) [
1− (τ−τ0)2/∆2

]6

× e−1/[1−(τ−τ0)
2/∆2], (2)

with Θ the unit step function. (Inclusion of the [1 −
(τ−τ0)2/∆2]6 factor makes the first few derivatives of
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FIG. 1: A spacetime diagram depicting several stages of the
evolution of the field theory state in response to the changing
spatial geometry. At proper time τ = τi, the 4d spacetime ge-
ometry starts to deform. The region of spacetime where the
geometry undergoes time-dependent deformation is shown as
the red region, labeled I. After proper time τ = τf , the de-
formation in 4d spacetime geometry turns off and the field
theory state is out of equilibrium. From proper time τf to
τ∗, shown as the yellow region labeled II, the system is sig-
nificantly anisotropic and not yet close to local equilibrium.
After time τ∗, shown in green and labeled III, the system is
close to local equilibrium and the evolution of the stress tensor
is well-described by hydrodynamics.

γ(τ) better behaved as τ−τ0 → ±∆.) The function γ(τ)
has compact support and is infinitely differentiable; γ(τ)
and all its derivatives vanish at the endpoints of the inter-
val (τi, τf ), with τi ≡ τ0−∆ and τf ≡ τ0 +∆. We choose
τ0 ≡ 5

4∆ so the geometry is flat at τ = 0.1 We choose to
measure all dimensionful quantities in units where ∆ = 1
(so τi = 1/4 and τf = 9/4).

Fig. 1 shows a spacetime diagram schematically de-
picting several stages in the evolution of the SYM state.
Hyperbola inside the forward lightcone are constant τ
surfaces. Prior to τ = τi, the system is in the ground
state. The region of spacetime where the geometry is
deformed from flat space is shown as the red region la-
beled I in Fig. 1. At coordinate time t = τi the geometry
of spacetime begins to deform in the vicinity of x‖ = 0.
As time progresses, the deformation splits into two local-
ized regions centered about x‖ ∼ ±t, which subsequently
separate and move in the ±x‖ directions at the speeds
asymptotically approaching the speed of light. After the
“pulse” of spacetime deformation passes, the system will
be left in an excited, anisotropic, non-equilibrium state.
That is, the deformation in the geometry will have done
work on the field theory state. This region, labeled II,

1 Choosing τ0 ≥ ∆ is convenient for numerics as our coordinate
system becomes singular on the τ = 0 lightcone. The particular
choice τ0 = 5

4∆ was made so that our numerical results (which
begin at τ = 0) contain a small interval of unmodified geometry
before the deformation turns on. For an interesting discussion of
non-equilibrium boost invariant states near τ = 0 see Ref. [27].
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Gravitational description

• Solve 5-d Einstein equations with time-dependent 
boundary condition GAB → gµμν	 	 	  and simple initial 
condition (AdS or AdS-BH)

• Extract〈Tµμν〉from sub-leading near-boundary 
asymptotics

• Note:

• time-dependent boundary conditions produce 
dynamic event horizon

• “Teleological” event horizon growth occurs outside 
causal future of boundary time dependence

➡ event horizon area (pulled back to boundary) cannot 
represent entropy in non-equilibrium setting

AdS

boundaryevent horizon

time

?

apparent horizon



Practical issues (I)
• Coordinate choice:

✘ Bad: Fefferman-Graham or similar (r, t, x)

✓ Good: Incoming Eddington-Finkelstein

• v = const. on incoming (radial) null geodesics

• dv/dr = ½A  on outgoing (radial) null geodesics

• g ′ ≡ ∂r g = directional derivative along incoming null geodesics,

• ġ  ≡ ∂v g + ½A ∂r g  = directional derivative along outgoing null geodesics

• Boundary conditions as r →∞: 

•  Case I:   A → r2,     Σ → r,    B → f(v)

•  Case II:  A → r2,    Σ → r τ1/3,    B → −⅔ lnτ + γ(τ)

ds2 = −A(v, r) dv2 + 2 dv dr + Σ(v, r)2
[
eB(v,r)(dx2 + dy2) + e−2B(v,r)dz2

]



Einstein equations

•   

• Non-trivial components: vv, rr, vr, zz, xx+yy 

➡   5 equations, 3 unknown functions (A,B,Σ)

• Need to separate dynamics from constraints

➡  

• N.B.:  A = non-dynamical auxillary field

boundary value constraint

initial value constraint

RMN − 1
2 GMN (R + 2Λ) = 0

3

is shown in yellow in Fig. 1. It is in this region that we
can study the relaxation of a far-from-equilibrium non-
equilibrium state. After some amount of proper time τ∗,
the system will have relaxed to a point where a hydrody-
namic description of the continuing evolution is accurate.
This final hydrodynamic regime is shown schematically
in green, and labeled III, in Fig. 1. As the late time
hydrodynamic solution to boost invariant flow is known
analytically, we choose to define τ∗ precisely as the time
beyond which the stress tensor coincides with the hydro-
dynamic approximation to within 10%.

Our task then is to find τ∗ and in particular, see how
it correlates with quantities such as the effective temper-
ature T∗ at time τ∗. In the c → ∞ limit, which corre-
sponds to a diverging size of the deformation in the 4d
geometry, it is inevitable that τ∗ approaches τf . This
is natural in conformal theories, since relaxation times
of non-hydrodynamic degrees of freedom are set by the
local energy density, and this diverges when c → ∞. In
other words, in the limit where 1/T∗ # ∆, the system re-
sponds adiabatically to the deformation in the geometry
and non-hydrodynamic degrees of freedom can remain in
equilibrium. A hydrodynamic description (without driv-
ing terms) will be accurate the moment the geometry
stops changing. Hence, in this limit one learns noth-
ing about the dynamics associated with the relaxation of
non-hydrodynamic modes.

More interesting is the case where the effective temper-
ature satisfies 1/T∗ ! ∆. This is the regime we will study.
Within this regime, the system can be significantly out-
of-equilibrium after the 4d geometry becomes flat. When
this is the case, we find that the entire process of plasma
creation and relaxation to approximate local equilibrium
(i.e., to a point where subsequent evolution is accurately
described by viscous hydrodynamics) occurs over a time
which varies between one and two times 1/T∗.

This result is consistent with the findings in our ear-
lier work [21] where we studied isotropization in a homo-
geneous strongly coupled N =4 SYM plasma. In that
work, all spatial gradients vanished. There was no exci-
tation whatsoever of hydrodynamic degrees of freedom,
and the system relaxed exponentially toward equilibrium.
In contrast, the dynamics of the boost-invariant plasma
in the present work involves both hydrodynamic and
non-hydrodynamic degrees of freedom. The results we
present display a rather clear separation between far-
from-equilibrium response, which cannot be described
by hydrodynamics, followed by later “near local equi-
librium” dynamics which is accurately described by vis-
cous hydrodynamics. A noteworthy finding is that the
domain of utility of hydrodynamics is not limited by
when higher order terms in the hydrodynamic expansion
become comparable to the lowest order viscous terms,
rather it is determined by the relative importance of non-
hydrodynamic degrees of freedom.

II. GRAVITATIONAL DESCRIPTION

Gauge/gravity duality [10] provides a gravitational de-
scription of large Nc SYM in which the 5d dual geometry
is governed by Einstein’s equations with a cosmological
constant. Einstein’s equations imply that the boundary
metric gB

µν(x), which characterizes the geometry of the
spacetime boundary, is dynamically unconstrained. The
specification of gB

µν(x) serves as a boundary condition for
the 5d Einstein equations. This reflects the fact that 4d
gravitational dynamics is neglected; the dual field the-
ory residing on the boundary responds to the boundary
geometry but does not back-react on the 4d boundary
geometry.

Diffeomorphism and spatial 3d translation invariance,
together with our assumed O(2) rotation invariance, al-
lows one to chose a 5d bulk metric of the form

ds2 =−A dτ2 + Σ2
[
eBdx2

⊥ + e−2Bdy2
]
+ 2dr dτ , (3)

where A, B, and Σ are all functions of the bulk radial co-
ordinate r and time τ only. The coordinates τ and r are
generalized infalling Eddington-Finkelstein coordinates.
Infalling radial null geodesics have constant values of τ
(as well as x⊥ and y). Outgoing radial null geodesics
satisfy dr/dτ = 1

2A. The geometry in the bulk at τ > 0
corresponds to the causal future of τ = 0 on the bound-
ary. The form of the metric (3) is invariant under the
residual diffeomorphism r → r + f(τ), where f(τ) is an
arbitrary function.

With a metric of the form (3), Einstein’s equations
may be written very compactly as

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (4a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (4b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (4c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (4d)

0 = Σ′′ + 1
2B′2 Σ , (4e)

where, for any function h(r, τ),

h′ ≡ ∂rh, ḣ ≡ ∂τh + 1
2A ∂rh . (5)

The derivative h′ is a directional derivative of h along
infalling radial null geodesics, while the derivative ḣ is
the directional derivative of h along outgoing null radial
geodesics. Eqs. (4d) and (4e) are constraint equations;
the radial derivative of Eq. (4d) and the time derivative
of Eq. (4e) are implied by Eqs. (4a)–(4c).

The above set of differential equations must be solved
subject to boundary conditions imposed at r = ∞. The
requisite condition is simply that the boundary metric
gB

µν(x) coincide with our choice (1) of the 4d geometry.
In particular, we must have

lim
r→∞

Σ(r, τ)/r ≡ τ1/3 , (6a)

lim
r→∞

B(r, τ) ≡ −2
3 ln τ + γ(τ) . (6b)



Practical issues (II)
• Need to solve for “velocities,”  ∂v B, ∂v Σ, and auxillary field A

• Discretize r →∞ system of coupled ODEs

• Must treat near-boundary behavior accurately
➡ match discretized numerics to large r asymptotics

Σ̇(r, v) = − 2
Σ(r, v)2

∫

r
dw Σ(w, v)3

Ḃ(r, v) = − 3
Σ(r, v)3/2

∫

r
dw

B′(w, v)
Σ(w, v)3/2

∫

w
dw̄ Σ(w̄, v)3 2

acts as an absorber of gravitational radiation — any ra-
diation which passes through the horizon cannot escape
back to the boundary. At late times when the bound-
ary geometry is no longer changing, the bulk geometry
outside the horizon will relax and asymptotically become
static. This is the gravitational description of thermal-
ization in SYM.

Diffeomorphism and translation invariance allows one
to chose the metric ansatz

ds2 =−A dv2 + Σ2
[
eBdx2

⊥ + e−2Bdx2
||
]
+ 2dr dv , (3)

where A, B, and Σ are all functions of the radial co-
ordinate r and time v only. The coordinates v and r
are generalized Eddington-Finkelstein coordinates. In-
falling radial null geodesics have constant values of v (as
well as x⊥ and x||). Outgoing radial null geodesics sat-
isfy dr/dv = 1

2A. At the boundary, located at r = ∞,
the coordinate v coincides with the boundary time t.
The geometry in the bulk at v > 0 corresponds to the
causal future of t > 0 on the boundary. The form of the
metric (3) is invariant under the residual diffeomorphism
r → r + f(v), where f(v) is an arbitrary function.

With a metric of the form (3), Einstein’s equations may
be reduced to the following set of differential equations:

0 = Σ Σ̇′ + 2Σ′ Σ̇ + 2Σ2 , (4a)
0 = Σ Ḃ′ + 3

2

(
Σ′Ḃ −B′ Σ̇

)
, (4b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (4c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (4d)

0 = Σ′′ + 1
2B′2 Σ , (4e)

where, for any function h(r, v),

h′ ≡ ∂rh, ḣ ≡ ∂vh + 1
2A ∂rh . (5)

The derivative h′ is a directional derivative of h along
infalling radial null geodesics, while the derivative ḣ is
the directional derivative of h along outgoing null radial
geodesics. Eqs. (4d) and (4e) are constraint equations;
the radial derivative of Eq. (4d) and the time derivative
of Eq. (4e) are implied by Eqs. (4a)–(4c).

The above set of differential equations must be solved
subject to boundary conditions imposed at r = ∞. The
requisite condition is simply that the boundary metric
gB

µν(x) coincide with our choice (1) of the 4d geometry.
In particular, we must have

lim
r→∞

Σ(r, v)/r ≡ 1 , lim
r→∞

B(r, v) ≡ B0(v) . (6)

One may fix the residual diffeomorphism invariance by
demanding that

lim
r→∞

[
A(r, v)− r2

]
/r = 0 . (7)

These boundary conditions, plus initial data satisfying
the constraint (4e) on some v = const. slice, uniquely
specify the subsequent evolution of the geometry.

Given a solution to Einstein’s equations, the SYM
stress tensor is determined by the near-boundary be-
havior of the 5d metric [5] . If SG denotes the gravi-
tational action, then the SYM stress tensor is given by
Tµν(x) = (2/

√
−gB(x)) δSG/δgB

µν(x) .
Near the boundary one may solve Einstein’s equations

with a power series expansion in r. Specifically, A, B and
Σ have asymptotic expansions of the form

A(r, v) =
∑

n=0

[ an(v) + αn(v) log r] r2−n , (8a)

B(r, v) =
∑

n=0

[ bn(v) + βn(v) log r] r−n , (8b)

Σ(r, v) =
∑

n=0

[ sn(v) + σn(v) log r] r1−n . (8c)

The boundary conditions (6) and (7) imply that b0(v) ≡
B0(v), s0(v) ≡ 1, a0(v) ≡ 1, and a1(v) ≡ 0. Substitut-
ing the above expansions into Einstein’s equations and
solving the resulting equations order by order in r, one
finds that there is one undetermined coefficient, b4(v).
All other coefficients are determined by the boundary
geometry, Einstein’s equations, and b4(v) [11].

By substituting the above series expansions into the
variation of the on-shell gravitational action, one may
compute the expectation value of the stress tensor in
terms of the expansion coefficients. This procedure has
been carried out in Ref. [5], so we simply quote the re-
sults. In terms of the expansion coefficients, the SYM
stress tensor reads

Tµ
ν = (N2

c /2π2) diag(−E ,P⊥,P⊥,P||) , (9)

where (with b(k)
0 ≡ ∂k

v b0):

−E = 3
4a4 + 1

256

[
3(b(1)

0 )4 + 14(b(2)
0 )2 − 4b(1)

0 b(3)
0

]
, (10a)

P⊥ = − 1
4a4 + b4 + 1

768

[
21(b(1)

0 )4 − 468(b(1)
0 )2b(2)

0

+ 10(b(2)
0 )2 + 4b(1)

0 b(3)
0 + 64b(4)

0

]
, (10b)

P|| = − 1
4a4 − 2b4 + 1

768

[
21(b(1)

0 )4 + 936(b(1)
0 )2b(2)

0

+ 10(b(2)
0 )2 + 4b(1)

0 b(3)
0 − 128b(4)

0

]
. (10c)

Numerics.—One may solve the Einstein equations
(4a)–(4c) for the time derivatives Σ̇, Ḃ, and A′′. Define

Θ(r, v) ≡
∫ ∞

r
dw

[
Σ(w, v)3 − h1(w, v)

]
−H1(r, v) ,

(11a)

Φ(r, v) ≡
∫ ∞

r
dw

[
2Θ(w, v)B′(w, v) Σ(w, v)−3/2

− h2(w, v)
]
−H2(r, v) , (11b)

where Hn is an indefinite (radial) integral of hn,

hn = H ′
n . (12)
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Practical issues (III)

• Must remove residual reparameterize freedom: r → r + α(v)

✘ Bad: fix coordinate location of event horizon

✓ Good: fix a1 = 0

• Must excise region surrounding singularity: r < rmin(v) < r horizon(v)

• Must choose specific boundary time dependence
• Ex:

f

v

f(v) = 1
2c [1− tanh(v/τ)] γ(τ) = c h(τ−τ0)6 e−1/h(τ−τ0)

h(δτ) = 1− (δτ)2/∆2

γ

ττ0
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Case I: Isotropization time

4

FIG. 2: The congruence of outgoing radial null geodesics.
The surface coloring displays A/r2. The excised region is
beyond the apparent horizon, which is shown by the dashed
green line. The geodesic shown as a solid black line is the
event horizon; it separates geodesics which escape to the
boundary from those which cannot escape.
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FIG. 3: Area elements of the true event horizon and the
apparent horizon as a function of time.

|c| 1 1.5 2 2.5 3 3.5 4

τ T 0.23 0.31 0.41 0.52 0.65 0.79 0.94

τiso T 0.67 0.68 0.71 0.92 1.2 1.5 1.8

τiso/τ 3.0 2.2 1.7 1.8 1.8 1.9 1.9

TABLE I: Final equilibrium temperature T and isotropization
time τiso (in units of T−1 or τ), for various values of c. The
isotropization time τiso is the time at which the pressures
deviate from their equilibrium values by less than 10%.

neither — this geodesic, shown as the black line in Fig. 2,
defines the true event horizon of the geometry.

Fig. 3 plots the area of the apparent and true event
horizons, again for c = 2. Nearly all growth of the ap-
parent horizon area occurs in the interval −2 < v < 0,
during which the boundary geometry is changing rapidly.
In contrast, the area of the true horizon grows in the dis-
tant past long before the boundary geometry is signifi-
cantly perturbed. This is a reflection of the global nature
of event horizons — the location of the event horizon de-

pends on the entire history of the geometry. It has been
argued [8] that it is the area element of the apparent
horizon, pulled back to the boundary along v = const.
infalling null geodesics, which should be identified with
the entropy density (times 4GN ) in the dual field theory.

Table I shows, for various values of c, the final equilib-
rium temperature T and a measure of the isotropization
time τiso. (These quantities only depend on |c|.) We
define τiso as the time when the transverse and longi-
tudinal pressures equal their final values to within 10%.
When |c| ! 2, we find that τiso ≈ 2τ , while for |c| " 2,
τiso ≈ 0.7/T . Since τiso is only a few times longer than
the time scale τ over which the boundary geometry (1) is
changing, this measure of isotropization time should best
be viewed as an upper bound on isotropization times as-
sociated with plasma dynamics alone. Nevertheless, it
is interesting to note that τiso ≈ 0.7/T corresponds to a
time of 1

2 fm/c when T = 350MeV, similar to estimates of
thermalization times inferred from hydrodynamic mod-
eling of RHIC collisions [3].

This work has explored, using gauge/gravity dual-
ity, far-from-equilibrium dynamics of anisotropic strongly
coupled SYM plasma. There are many interesting gener-
alizations, including boost invariant flows, which should
be feasible to study using similar methods. This work
was supported in part by the U.S. Department of Energy
under Grant No. DE-FG02-96ER40956. L.Y. thanks the
Galileo Galilei Institute for Theoretical Physics, and the
Tata Institute for Fundamental Research, for their hospi-
tality, and the INFN for partial support while this work
was in progress. We are grateful to Jim Bardeen, Michal
Heller, Rob Myers, Paul Romatschke and Dam Son for
useful discussions.
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As is evident from Fig. 2, at late times some geodesics
escape up to the boundary and some plunge deep into
the bulk. Separating escaping from plunging geodesics is
precisely one geodesic that does neither. This geodesic,
shown as the solid blue curve in the figure, defines the
location of a null surface beyond which all events are
causally disconnected from observers on the boundary.
This surface is the event horizon of the geometry.

After the time τf = 2.25, the boundary geometry be-
comes flat and unchanging, no additional gravitational
radiation is produced, and the bulk geometry approaches
a slowly evolving form. The rapid relaxation of high fre-
quency modes can clearly be seen in the behavior of A/r2

shown in Fig. 2 — all of the high frequency structure
in the plot appears only during the time interval where
the boundary geometry is changing and creating grav-
itational radiation. Physically, the rapid relaxation of
high frequency modes occurs because the horizon acts as
an absorber of gravitational radiation and low frequency
modes simply take more time to fall into the horizon than
high frequency modes. Therefore, as time progresses the
geometry relaxes onto a smooth universal form whose
temporal variations become slower and slower as τ →∞.

One can systematically construct late-time asymp-
totic expansions of boost-invariant solutions to Einstein’s
equations [7]. The expansion, which is a power series ex-
pansion in gradients, is dual to the hydrodynamic expan-
sion in the field theory. This is natural, as the late time
evolution of the field theory state in conformal N =4
SYM must be described by hydrodynamics. In the grav-
itational setting, the metric is expanded in terms of 4d
spacetime gradients of slowly varying fields. For the case
of boost invariant flow, each spacetime derivative intro-
duces a factor of 1/(Λτ)2/3 into the solution, where Λ
is an energy scale which characterizes the initial energy
density [24]. The numerical coefficients of the expansion
are related to transport coefficients in the dual gauge the-
ory, and are independent of the initial conditions used to
create the black hole geometry. Therefore, at asymptoti-
cally late times all sensitivity to the details of the initial
conditions used to created the black hole geometry is
isolated within the energy scale Λ, up to exponentially
decreasing corrections to the late time behavior.

At asymptotically late times, the boost invariant gra-
dient expansion of Ref. [24] yields a metric

ds2 = r2

[
−

(
1−r4

h

r4

)
dτ2 + dx2

⊥ + τ2dy2

]
+ 2drdτ, (21)

where rh(τ) ≈ πΛ/(Λτ)1/3 is the approximate location of
the event and apparent horizons, whose positions asymp-
totically coincide at late times. The asymptotic metric
(21) has a Hawking temperature

THawking = Λ/(Λτ)1/3, (22)

which is proportional to the horizon radius rh(τ). As
time progresses, the horizon slowly falls deeper into the
bulk, and the temperature of the black hole decreases

0 2 4
0

10

20

τ

h
o

ri
z
o

n
 a

re
a
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FIG. 3: Area of the event horizon and apparent horizon, per
unit rapidity, as a function of proper time τ . The growth of
the apparent horizon area, shown by the magenta dotted line,
is causally connected to the changing boundary geometry. In
contrast, the growth of the event horizon area, shown as a
solid blue line, is non-zero at arbitrarily early times, long
before the boundary geometry has started to change.

as τ−1/3. The falling of the horizon into the bulk, as an
inverse power of τ , is clearly visible in the numerical data
presented in Fig. 2.

Fig. 3 shows a plot of the area (per unit rapidity) of
the event and apparent horizons, again for c = 1, as a
function of τ . The area (per unit rapidity) of the appar-
ent horizon is given by Σ(rh(τ), τ)3 where rh(τ) is the
apparent horizon location (given by a zero of Σ̇). The
area (per unit rapidity) of the event horizon is also given
by Σ3, but instead evaluated on the null geodesic defin-
ing the event horizon. The area of the apparent horizon
starts off at zero, and grows rapidly for τ in the interval
(τi, τf ). This is to be expected, as it is during this in-
terval of time that the rapid variation of the boundary
geometry produces infalling gravitational radiation which
is subsequently absorbed by the horizon. As radiation is
absorbed, the horizon area must grow. After the produc-
tion of radiation ceases, the the geometry relaxes onto
the asymptotic form (21) and the area (per unit rapid-
ity) of the apparent and event horizons slowly approach
a constant. From the figure, one sees that the growth of
the apparent horizon area changes rather abruptly near
time τf . This reflects of the fact that the boundary ge-
ometry ceases to produce infalling radiation after time
τf . The flux of radiation through the horizon decreases
dramatically after τf and correspondingly, so does the
growth of the apparent horizon area.

In contrast to the apparent horizon area, which is non-
zero only in the causal future of the boundary time τi, the
event horizon area is non-zero arbitrarily far in the past,
long before the boundary geometry starts to change.
This reflects the teleological nature of event horizons.
The event horizon separates events which are causally
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FIG. 5: Energy density, longitudinal and transverse pressure, all divided by N2
c /2π2, as a function of time for c = −1 (left)

and c = +1 (right). The energy density and pressures start off at zero at time τi = 1/4 when the system is in the vacuum state.
During the interval of time τ ∈ (τi, τf ) = (0.25, 2.25), the 4d geometry is changing and doing work on the field theory state.
After time τf the deformation in the geometry turns off and the field theory state subsequently relaxes onto a hydrodynamic
description. The smooth tails in both plots occur during this regime. At late times, from top to bottom, the three curves (in
both plots) correspond to the energy density E , transverse pressure P⊥, and longitudinal pressure P‖.

cuss, this is always the case in the hydrodynamic limit of
boost invariant flow.

From the gravitational asymptotic expansion of
Ref. [24], one can compute the SYM stress tensor via
Eq. (11). The results read [24]

E =
3π4Λ4

4(Λτ)4/3

[
1− 2C1

(Λτ)2/3
+

C2

(Λτ)4/3

]
, (24a)

P⊥ =
π4Λ4

4(Λτ)4/3

[
1− C2

3(Λτ)4/3

]
, (24b)

P|| =
π4Λ4

4(Λτ)4/3

[
1− 2C1

(Λτ)2/3
+

5C2

3(Λτ)4/3

]
, (24c)

up to O((Λτ)−2) corrections. The constant C1 is related
to the viscosity to entropy density ratio of the plasma,
while the constant C2 is related to second-order hydrody-
namic relaxation times. For strongly coupled SYM [25],

C1 =
1
3π

, C2 =
2 + ln 2
18π2

. (25)

The form (24) for the stress-energy can also be obtained
from hydrodynamic considerations alone, together with
knowledge of first and second order transport coefficients,
and the assumption of boost invariance [33, 34].

It is evident from the leading terms of the result (24)
that at late times the stress-energy tensor approaches the
ideal hydrodynamic form

Tµ
ν =

π2N2
c T (τ)4

8
diag(−3, 1, 1, 1), (26)

with a time-dependent temperature

T (τ) = Λ/(Λτ)1/3, (27)

which matches the Hawking temperature (22) of the
black brane in the gravitational description. The ideal
stress tensor (26) is completely isotropic. Subleading
terms in the result (24) show that the transverse pressure
differs from the longitudinal pressure when viscous ef-
fects are taken into account. In particular, as mentioned
above, first order viscous corrections make the transverse
pressure larger than the longitudinal pressure.

To facilitate a quantitative comparison between our
numerical results for the stress tensor and the late-time
hydrodynamic expansions, Fig. 6 shows the energy den-
sity and pressures for c = 1/4, 1 and 3/2, with the cor-
responding hydrodynamic forms (24) plotted on top of
the numerical data. The plots start at time τ = τf . In
all three plots, one clearly sees the stress-energy com-
ponents approach their hydrodynamic approximations.
Moreover, in all plots one sees a substantial anisotropy
even at late times where a hydrodynamic treatment is
applicable. In other words, the effect of viscosity is very
evident in these results.

Looking at Fig. 6, for time τ = τf and c = 1/4, one
sees that the transverse and longitudinal pressures are
almost equal and opposite in magnitude at this time. So
the system is initially very far-from-equilibrium. How-
ever, for c = 3/2 the pressures are both positive, and
system is much closer to equilibrium at τf . At first sight
this might seem peculiar: how can it be that for larger
values of c, where the size of the perturbation in the 4d
geometry is huge, the system takes less time to reach local
equilibrium! Qualitatively, this apparent puzzle is easy
to understand. For large c, the changing geometry does
more work on the system and consequently the system
reaches a higher effective temperature. Because SYM is a

5

only depend on b0(τ) and b4(τ) and their τ derivatives,
this choice determines hn(r, τ) in terms of one unknown
function b4(τ).

With the subtraction functions hn specified by the
aforementioned asymptotic expansions, integrating Eq.
(14) fixes the compensating integrals Hn up to an in-
tegration constant which is an arbitrary function of τ .
Integrating Eq. (15c) for A(r, τ) introduces two further
(τ dependent) constants of integration. The most direct
route for fixing these constants of integration is to match
the large r behavior of the expressions (15a) and (15b)
and the integrated version of Eq. (15c) to the correspond-
ing expressions obtained from the series expansions (8).
This fixes all integration constants in terms of b0 and b4.

Our algorithm for solving the initial value problem
with time dependent boundary conditions is as follows.
At time τi the geometry is AdS5 with the metric

ds2 = r2
[
−dτ2 + dx2

⊥ +
(
τ + 1

r

)2
dy2

]
+ 2dr dτ . (16)

Therefore, at the initial time τi we have

B(r, τi) = − 2
3 ln

(
τi + 1

r

)
, (17a)

Σ(r, τi) = r
(
τi + 1

r

)1/3
, (17b)

A(r, τi) = r2 . (17c)

With A(r, τi), B(r, τi) and Σ(r, τi) known, one can then
compute the time derivatives ∂τB(r, τi) and ∂τΣ(r, τi)
from Eqs. (15b) and (15a), and step forward in time,

B(r, τi + ∆τ) ≈ B(r, τi) + ∂τB(r, τi)∆τ , (18)
Σ(r, τi + ∆τ) ≈ Σ(r, τi) + ∂τΣ(r, τi) ∆τ . (19)

With B(r, τi+∆τ) and Σ(r, τi+∆τ) known, one can then
integrate Eq. (15c) to determine A(r, τi+∆τ). With the
complete geometry on the time slice τ = τi+∆τ deter-
mined, one may then repeat the entire process and take
another step forward in time.3

An important practical matter is fixing the computa-
tion domain in r — how far into the bulk does one want
to compute the geometry? If a horizon forms, then one
may excise the geometry inside the horizon as this re-
gion is causally disconnected from the geometry outside
the horizon. Furthermore, one must excise the geometry
to avoid singularities behind horizons [29] . To perform
the excision, one first identifies the location of an appar-
ent horizon (an outermost marginally trapped surface)
which, if it exists, must lie inside an event horizon [30] .

3 Because we are working with a discretized version of Einstein’s
equations, the discretized version of the constraint equation (4a)
is not automatically implied by the discretized version of the
other Einstein equations. To minimize the amount of accumu-
lated error, we also monitor the accuracy of the constraint equa-
tion (4a), and make tiny adjustments to Σ to prevent growing
violation of the constraint.

FIG. 2: The congruence of outgoing radial null geodesics.
The surface coloring displays A/r2. Before time τi = 1/4
this quantity equals one. The excised region lies inside the
apparent horizon, which is shown by the dashed magenta line.
The geodesic shown as a solid blue line is the event horizon; it
separates geodesics which escape to the boundary from those
which cannot escape.

We have chosen to make the incision slightly inside the
location of the apparent horizon. For the metric (3), the
location rh(τ) of the apparent horizon is given by the out-
ermost point where Σ̇(rh(τ), τ) = 0 or, from Eq. (15a),
Θ(rh(τ), τ) = 0 .

IV. RESULTS AND DISCUSSION

We first discuss our results from the 5d gravitational
perspective and present data for c = 1. Results for
other values of c are presented below, but the qualita-
tive features of the results are independent of the value
of c. Fig. 2 shows a congruence of outgoing radial null
geodesics for c = 1. The geodesics are obtained by in-
tegrating dr/dτ = 1

2A(r, τ). The colored surface in the
plot displays the value of A/r2. Excised from the plot
is a region of the geometry behind the apparent horizon,
whose location is shown by the magenta dotted line.

At times τ < τi = 1/4, the boundary geometry is
static and A/r2 = 1. The outgoing geodesic congruence
at early times therefore satisfies

τ + 2/r = const. , (20)

and hence appears as parallel straight lines on the left
side of Fig. 2. These are just radial geodesics in AdS5,
which is the geometry dual to the initial zero temperature
ground state. After time τi the boundary geometry starts
to change, A/r2 deviates from unity, and the congruence
departs from the zero temperature form (20).

Perhaps the most dramatic feature in Fig. 2 is the for-
mation of a bifurcation in the congruence of geodesics.

τi = 0.25
τf = 2.25

c = 1

c = 1
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2nd order gradient expansion

FIG. 4: Close-up view of the event horizon and apparent
horizon areas, per unit rapidity, as a function of proper time
τ , together with their corresponding asymptotic expressions
(23). Both horizon areas are very well approximated by their
asymptotic expansions, at second order in gradients, after
time τf = 2.25 when the boundary geometry becomes flat.
Note the rather abrupt change in the growth of the apparent
horizon area at τf .

disconnected from boundary observers. As Fig. 2 clearly
shows, even before the boundary geometry has started to
change there are events which are causally disconnected
from the boundary. These events are, by definition, be-
hind the event horizon. Simply put, the black hole exists
before the boundary deformation has begun!

Because the radial geodesic defining the event hori-
zon is moving outwards at the speed of light, before the
boundary geometry starts to change the area of the event
horizon grows like 4(k+τ)/(k−τ)3, where k is the value of
v + 2/r on the geodesic defining the event horizon. The
appropriate value of the constant k can only be deter-
mined when the entire future of the geometry is known.4
Because of its acausal nature, the area of the event hori-
zon cannot correspond to the entropy of the system in a
non-equilibrium setting. In contrast, it does appear sen-
sible to regard the apparent horizon area as a measure of
thermodynamic entropy in a non-equilibrium setting.

To facilitate a quantitative comparison between our
numerical solutions to Einstein’s equations and the late
time gradient expansion of Ref. [24], Fig. 4 shows a close-
up view of the areas (per unit rapidity) of the event and
apparent horizons, together with the corresponding late-

4 This manifests itself as follows. At asymptotically late times, the
location of the event horizon coincides with the zero of A(r, τ),
so the unique outgoing radial geodesic that approaches the zero
of A(r, τ) as τ → ∞ defines the event horizon. To locate the
position of this geodesic at early times, and hence determine the
horizon area, one must know the entire future of the geometry.

time asymptotic expansions, computed through second
order in gradients. These asymptotic results are [25, 31,
32]

AEH = π3Λ2

[
1− 1

2π(Λτ)2/3
+

6 + π + 6 ln 2
24π2(Λτ)4/3

]
, (23a)

AAH = π3Λ2

[
1− 1

2π(Λτ)2/3
+

2 + π + ln 2
24π2(Λτ)4/3

]
, (23b)

for the event and apparent horizon areas, respectively,
up to O

(
(Λτ)−2

)
corrections. From the figure one sees

that the asymptotic expansions, shown in the figure as
the dashed black lines, agree very well with the complete
numerical results. In fact, at time τf when the boundary
geometry becomes flat, the asymptotic forms agree with
the full numerical results for both horizon areas to within
0.11%.

For c = 1, our numerically measured value of Λ is
0.8. Consequently the first order corrections appearing
in Eqs. (23) generate 10% corrections at time τf , while
the second order terms yield 0.20% and 0.56% corrections
to the event and apparent horizon areas, respectively.

This comparison shows that the geometry in the bulk
(as probed by the horizon areas) is already very well ap-
proximated by the gradient expansion of Ref. [24] at time
τf . However, it must be stressed that this very early
agreement with hydrodynamics is specific to the horizon
areas, and is not so true of other observables which are
sensitive to the anisotropy in the geometry, such as the
SYM stress tensor, which we discuss next.

We now turn to a discussion of our results for bound-
ary field theory observables. Fig. 5 shows plots of the
energy density and transverse and longitudinal pressures
produced by the changing boundary geometry (1), when
c = ±1. These quantities begin at zero before time τi,
when the system is in the vacuum state, and deviate from
zero once the 4d geometry starts to vary. During the in-
terval of time where the 4d geometry is changing, the
energy density generally grows and the pressures rapidly
oscillate: work is being done on the field theory state.
After time τf the boundary geometry becomes flat and
no longer does any work on the system. As time pro-
gresses, non-hydrodynamic degrees of freedom relax and
at late times the evolution of the system is governed by
hydrodynamics. The late time hydrodynamic behavior
manifests itself as the smooth tails appearing in Fig. 5.

The two sets of plots in Fig. 5, contrasting c = +1 and
−1, are qualitatively similar, with the main difference
being the phase of the oscillations in the pressures. For
example, for c = −1 the transverse pressure is negative
at τf whereas for c = +1 the transverse pressure is pos-
itive and larger than the longitudinal pressure, which is
nearly zero at τf . As local equilibrium requires that the
transverse and longitudinal pressure be nearly equal [3],
one sees that in either case the system is far from equi-
librium at τf . Furthermore, from the figure one sees that
for either sign of c, the transverse pressure approaches
the longitudinal pressure from above. As we next dis-
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FIG. 6: Energy density, longitudinal and transverse pressure, all divided by N2
c /2π2, as a function of time for c = 1/4 (left),

c = 1 (middle) and c = 3/2 (right). From top to bottom, the curves are energy density (blue), transverse pressure (green), and
longitudinal pressure (red). The dashed black lines in each plot show the second order viscous hydrodynamic approximation
(24) to the different stress tensor components. Note the significantly different ordinate ranges in the three plots; the size of the
difference between the transverse and longitudinal pressure grows with increasing c.

c −2 −3/2 −1 −1/2 −1/4 1/4 1/2 1 3/2 2

τ∗ 2.2 2.3 2.4 2.7 3.1 3.1 2.7 2.4 2.3 2.2

T∗ 0.93 0.77 0.60 0.40 0.27 0.27 0.41 0.62 0.80 0.97

Λτ∗ 3.1 2.5 1.9 1.2 0.87 0.89 1.3 1.9 2.6 3.3

(τ∗−τi) T∗ 2.0 1.7 1.4 1.1 0.84 0.85 1.1 1.5 1.8 2.1

(τ∗−τf ) T∗ 0.00 0.05 0.11 0.19 0.24 0.24 0.20 0.11 0.04 0.00
P⊥(τf )−P||(τf )

E(τf ) 0.06 −0.03 −0.22 −0.56 −1.1 1.6 0.91 0.47 0.24 0.13

TABLE I: Quantities characterizing the relaxation to equilibrium, for various values of the boundary perturbation amplitude
c. The relaxation time τ∗ (in units of ∆) is the time at which the transverse and longitudinal pressures deviate from their
hydrodynamic values (24) by less than 10%. T∗ is the temperature at time τ∗, and Λ is the scale appearing in the hydrodynamic
expansion (24) (both measured in units of ∆−1). The quantity (τ∗−τi) T∗ measures the total time in units of T∗ required to
produce the plasma and relax to near local-equilibrium. The quantity (τ∗−τf ) T∗ measures the time in units of T∗ required
for the plasma to relax after the deformation in the geometry ceases. The quantity

ˆ
P⊥(τf )− P||(τf )

˜
/E(τf ) is the pressure

anisotropy, relative to the energy density, at time τf .

conformal theory, relaxation times for non-hydrodynamic
degrees of freedom must scale inversely with the temper-
ature, and hence must vanish as the local energy density
diverges. Therefore, in the c → ∞ limit the system will
always be very close to local equilibrium — even while
the 4d geometry is changing — and the anisotropy in
the pressures will vanish immediately at τf . As a con-
sequence, one learns little about the physics of the re-
laxation of non-hydrodynamic degrees of freedom in the
c→∞ limit.

Table I shows how various quantities characterizing the
relaxation of the plasma depend on the boundary pertur-
bation amplitude c, within the range [−2, 2]. Included in
the table is the time τ∗, beyond which the stress ten-
sor agrees with the hydrodynamic approximation (24) to
within 10%. Also shown is the temperatures T∗ at time
τ∗, the scale Λ measured in units of τ∗, and the time

intervals τ∗−τi and τ∗−τf measured in units of T∗.
From the table, one sees that as the magnitude of c

increases, so does the temperature T∗. Moreover, as the
magnitude of c increases, one sees that the time scale τ∗
approaches τf = 2.25. In particular, for |c| = 2 the stress
tensor is already within 10% of its hydrodynamic limit
at τf . As discussed above, both of these features are
to be expected. Increasing |c| means that the changing
geometry does more work on the system, producing a
larger energy density, and consequently the relaxation
times of non-hydrodynamic degrees of freedom decrease.
In all cases presented in Table I, the relevant dynamics
— from the production of the plasma to its relaxation to
near local equilibrium (where hydrodynamics applies) —
occur over a time τ∗ − τi ! 2/T∗.

From Table I, one also sees that for |c| ! 1/2 the time
scale τ∗ at which a hydrodynamic treatment becomes ac-
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FIG. 4: Close-up view of the event horizon and apparent
horizon areas, per unit rapidity, as a function of proper time
τ , together with their corresponding asymptotic expressions
(23). Both horizon areas are very well approximated by their
asymptotic expansions, at second order in gradients, after
time τf = 2.25 when the boundary geometry becomes flat.
Note the rather abrupt change in the growth of the apparent
horizon area at τf .

disconnected from boundary observers. As Fig. 2 clearly
shows, even before the boundary geometry has started to
change there are events which are causally disconnected
from the boundary. These events are, by definition, be-
hind the event horizon. Simply put, the black hole exists
before the boundary deformation has begun!

Because the radial geodesic defining the event hori-
zon is moving outwards at the speed of light, before the
boundary geometry starts to change the area of the event
horizon grows like 4(k+τ)/(k−τ)3, where k is the value of
v + 2/r on the geodesic defining the event horizon. The
appropriate value of the constant k can only be deter-
mined when the entire future of the geometry is known.4
Because of its acausal nature, the area of the event hori-
zon cannot correspond to the entropy of the system in a
non-equilibrium setting. In contrast, it does appear sen-
sible to regard the apparent horizon area as a measure of
thermodynamic entropy in a non-equilibrium setting.

To facilitate a quantitative comparison between our
numerical solutions to Einstein’s equations and the late
time gradient expansion of Ref. [24], Fig. 4 shows a close-
up view of the areas (per unit rapidity) of the event and
apparent horizons, together with the corresponding late-

4 This manifests itself as follows. At asymptotically late times, the
location of the event horizon coincides with the zero of A(r, τ),
so the unique outgoing radial geodesic that approaches the zero
of A(r, τ) as τ → ∞ defines the event horizon. To locate the
position of this geodesic at early times, and hence determine the
horizon area, one must know the entire future of the geometry.

time asymptotic expansions, computed through second
order in gradients. These asymptotic results are [25, 31,
32]

AEH = π3Λ2

[
1− 1

2π(Λτ)2/3
+

6 + π + 6 ln 2
24π2(Λτ)4/3

]
, (23a)

AAH = π3Λ2

[
1− 1

2π(Λτ)2/3
+

2 + π + ln 2
24π2(Λτ)4/3

]
, (23b)

for the event and apparent horizon areas, respectively,
up to O

(
(Λτ)−2

)
corrections. From the figure one sees

that the asymptotic expansions, shown in the figure as
the dashed black lines, agree very well with the complete
numerical results. In fact, at time τf when the boundary
geometry becomes flat, the asymptotic forms agree with
the full numerical results for both horizon areas to within
0.11%.

For c = 1, our numerically measured value of Λ is
0.8. Consequently the first order corrections appearing
in Eqs. (23) generate 10% corrections at time τf , while
the second order terms yield 0.20% and 0.56% corrections
to the event and apparent horizon areas, respectively.

This comparison shows that the geometry in the bulk
(as probed by the horizon areas) is already very well ap-
proximated by the gradient expansion of Ref. [24] at time
τf . However, it must be stressed that this very early
agreement with hydrodynamics is specific to the horizon
areas, and is not so true of other observables which are
sensitive to the anisotropy in the geometry, such as the
SYM stress tensor, which we discuss next.

We now turn to a discussion of our results for bound-
ary field theory observables. Fig. 5 shows plots of the
energy density and transverse and longitudinal pressures
produced by the changing boundary geometry (1), when
c = ±1. These quantities begin at zero before time τi,
when the system is in the vacuum state, and deviate from
zero once the 4d geometry starts to vary. During the in-
terval of time where the 4d geometry is changing, the
energy density generally grows and the pressures rapidly
oscillate: work is being done on the field theory state.
After time τf the boundary geometry becomes flat and
no longer does any work on the system. As time pro-
gresses, non-hydrodynamic degrees of freedom relax and
at late times the evolution of the system is governed by
hydrodynamics. The late time hydrodynamic behavior
manifests itself as the smooth tails appearing in Fig. 5.

The two sets of plots in Fig. 5, contrasting c = +1 and
−1, are qualitatively similar, with the main difference
being the phase of the oscillations in the pressures. For
example, for c = −1 the transverse pressure is negative
at τf whereas for c = +1 the transverse pressure is pos-
itive and larger than the longitudinal pressure, which is
nearly zero at τf . As local equilibrium requires that the
transverse and longitudinal pressure be nearly equal [3],
one sees that in either case the system is far from equi-
librium at τf . Furthermore, from the figure one sees that
for either sign of c, the transverse pressure approaches
the longitudinal pressure from above. As we next dis-

c = 1
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FIG. 5: Energy density, longitudinal and transverse pressure, all divided by N2
c /2π2, as a function of time for c = −1 (left)

and c = +1 (right). The energy density and pressures start off at zero at time τi = 1/4 when the system is in the vacuum state.
During the interval of time τ ∈ (τi, τf ) = (0.25, 2.25), the 4d geometry is changing and doing work on the field theory state.
After time τf the deformation in the geometry turns off and the field theory state subsequently relaxes onto a hydrodynamic
description. The smooth tails in both plots occur during this regime. At late times, from top to bottom, the three curves (in
both plots) correspond to the energy density E , transverse pressure P⊥, and longitudinal pressure P‖.

cuss, this is always the case in the hydrodynamic limit of
boost invariant flow.

From the gravitational asymptotic expansion of
Ref. [24], one can compute the SYM stress tensor via
Eq. (11). The results read [24]

E =
3π4Λ4

4(Λτ)4/3

[
1− 2C1

(Λτ)2/3
+

C2

(Λτ)4/3

]
, (24a)

P⊥ =
π4Λ4

4(Λτ)4/3

[
1− C2

3(Λτ)4/3

]
, (24b)

P|| =
π4Λ4

4(Λτ)4/3

[
1− 2C1

(Λτ)2/3
+

5C2

3(Λτ)4/3

]
, (24c)

up to O((Λτ)−2) corrections. The constant C1 is related
to the viscosity to entropy density ratio of the plasma,
while the constant C2 is related to second-order hydrody-
namic relaxation times. For strongly coupled SYM [25],

C1 =
1
3π

, C2 =
2 + ln 2
18π2

. (25)

The form (24) for the stress-energy can also be obtained
from hydrodynamic considerations alone, together with
knowledge of first and second order transport coefficients,
and the assumption of boost invariance [33, 34].

It is evident from the leading terms of the result (24)
that at late times the stress-energy tensor approaches the
ideal hydrodynamic form

Tµ
ν =

π2N2
c T (τ)4

8
diag(−3, 1, 1, 1), (26)

with a time-dependent temperature

T (τ) = Λ/(Λτ)1/3, (27)

which matches the Hawking temperature (22) of the
black brane in the gravitational description. The ideal
stress tensor (26) is completely isotropic. Subleading
terms in the result (24) show that the transverse pressure
differs from the longitudinal pressure when viscous ef-
fects are taken into account. In particular, as mentioned
above, first order viscous corrections make the transverse
pressure larger than the longitudinal pressure.

To facilitate a quantitative comparison between our
numerical results for the stress tensor and the late-time
hydrodynamic expansions, Fig. 6 shows the energy den-
sity and pressures for c = 1/4, 1 and 3/2, with the cor-
responding hydrodynamic forms (24) plotted on top of
the numerical data. The plots start at time τ = τf . In
all three plots, one clearly sees the stress-energy com-
ponents approach their hydrodynamic approximations.
Moreover, in all plots one sees a substantial anisotropy
even at late times where a hydrodynamic treatment is
applicable. In other words, the effect of viscosity is very
evident in these results.

Looking at Fig. 6, for time τ = τf and c = 1/4, one
sees that the transverse and longitudinal pressures are
almost equal and opposite in magnitude at this time. So
the system is initially very far-from-equilibrium. How-
ever, for c = 3/2 the pressures are both positive, and
system is much closer to equilibrium at τf . At first sight
this might seem peculiar: how can it be that for larger
values of c, where the size of the perturbation in the 4d
geometry is huge, the system takes less time to reach local
equilibrium! Qualitatively, this apparent puzzle is easy
to understand. For large c, the changing geometry does
more work on the system and consequently the system
reaches a higher effective temperature. Because SYM is a
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FIG. 5: Energy density, longitudinal and transverse pressure, all divided by N2
c /2π2, as a function of time for c = −1 (left)

and c = +1 (right). The energy density and pressures start off at zero at time τi = 1/4 when the system is in the vacuum state.
During the interval of time τ ∈ (τi, τf ) = (0.25, 2.25), the 4d geometry is changing and doing work on the field theory state.
After time τf the deformation in the geometry turns off and the field theory state subsequently relaxes onto a hydrodynamic
description. The smooth tails in both plots occur during this regime. At late times, from top to bottom, the three curves (in
both plots) correspond to the energy density E , transverse pressure P⊥, and longitudinal pressure P‖.

cuss, this is always the case in the hydrodynamic limit of
boost invariant flow.

From the gravitational asymptotic expansion of
Ref. [24], one can compute the SYM stress tensor via
Eq. (11). The results read [24]

E =
3π4Λ4

4(Λτ)4/3

[
1− 2C1

(Λτ)2/3
+

C2

(Λτ)4/3

]
, (24a)

P⊥ =
π4Λ4

4(Λτ)4/3

[
1− C2

3(Λτ)4/3

]
, (24b)

P|| =
π4Λ4

4(Λτ)4/3

[
1− 2C1

(Λτ)2/3
+

5C2

3(Λτ)4/3

]
, (24c)

up to O((Λτ)−2) corrections. The constant C1 is related
to the viscosity to entropy density ratio of the plasma,
while the constant C2 is related to second-order hydrody-
namic relaxation times. For strongly coupled SYM [25],

C1 =
1
3π

, C2 =
2 + ln 2
18π2

. (25)

The form (24) for the stress-energy can also be obtained
from hydrodynamic considerations alone, together with
knowledge of first and second order transport coefficients,
and the assumption of boost invariance [33, 34].

It is evident from the leading terms of the result (24)
that at late times the stress-energy tensor approaches the
ideal hydrodynamic form

Tµ
ν =

π2N2
c T (τ)4

8
diag(−3, 1, 1, 1), (26)

with a time-dependent temperature

T (τ) = Λ/(Λτ)1/3, (27)

which matches the Hawking temperature (22) of the
black brane in the gravitational description. The ideal
stress tensor (26) is completely isotropic. Subleading
terms in the result (24) show that the transverse pressure
differs from the longitudinal pressure when viscous ef-
fects are taken into account. In particular, as mentioned
above, first order viscous corrections make the transverse
pressure larger than the longitudinal pressure.

To facilitate a quantitative comparison between our
numerical results for the stress tensor and the late-time
hydrodynamic expansions, Fig. 6 shows the energy den-
sity and pressures for c = 1/4, 1 and 3/2, with the cor-
responding hydrodynamic forms (24) plotted on top of
the numerical data. The plots start at time τ = τf . In
all three plots, one clearly sees the stress-energy com-
ponents approach their hydrodynamic approximations.
Moreover, in all plots one sees a substantial anisotropy
even at late times where a hydrodynamic treatment is
applicable. In other words, the effect of viscosity is very
evident in these results.

Looking at Fig. 6, for time τ = τf and c = 1/4, one
sees that the transverse and longitudinal pressures are
almost equal and opposite in magnitude at this time. So
the system is initially very far-from-equilibrium. How-
ever, for c = 3/2 the pressures are both positive, and
system is much closer to equilibrium at τf . At first sight
this might seem peculiar: how can it be that for larger
values of c, where the size of the perturbation in the 4d
geometry is huge, the system takes less time to reach local
equilibrium! Qualitatively, this apparent puzzle is easy
to understand. For large c, the changing geometry does
more work on the system and consequently the system
reaches a higher effective temperature. Because SYM is a
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FIG. 5: Energy density, longitudinal and transverse pressure, all divided by N2
c /2π2, as a function of time for c = −1 (left)

and c = +1 (right). The energy density and pressures start off at zero at time τi = 1/4 when the system is in the vacuum state.
During the interval of time τ ∈ (τi, τf ) = (0.25, 2.25), the 4d geometry is changing and doing work on the field theory state.
After time τf the deformation in the geometry turns off and the field theory state subsequently relaxes onto a hydrodynamic
description. The smooth tails in both plots occur during this regime. At late times, from top to bottom, the three curves (in
both plots) correspond to the energy density E , transverse pressure P⊥, and longitudinal pressure P‖.

cuss, this is always the case in the hydrodynamic limit of
boost invariant flow.

From the gravitational asymptotic expansion of
Ref. [24], one can compute the SYM stress tensor via
Eq. (11). The results read [24]

E =
3π4Λ4

4(Λτ)4/3

[
1− 2C1

(Λτ)2/3
+

C2

(Λτ)4/3

]
, (24a)

P⊥ =
π4Λ4

4(Λτ)4/3

[
1− C2

3(Λτ)4/3

]
, (24b)

P|| =
π4Λ4

4(Λτ)4/3

[
1− 2C1

(Λτ)2/3
+

5C2

3(Λτ)4/3

]
, (24c)

up to O((Λτ)−2) corrections. The constant C1 is related
to the viscosity to entropy density ratio of the plasma,
while the constant C2 is related to second-order hydrody-
namic relaxation times. For strongly coupled SYM [25],

C1 =
1
3π

, C2 =
2 + ln 2
18π2

. (25)

The form (24) for the stress-energy can also be obtained
from hydrodynamic considerations alone, together with
knowledge of first and second order transport coefficients,
and the assumption of boost invariance [33, 34].

It is evident from the leading terms of the result (24)
that at late times the stress-energy tensor approaches the
ideal hydrodynamic form

Tµ
ν =

π2N2
c T (τ)4

8
diag(−3, 1, 1, 1), (26)

with a time-dependent temperature

T (τ) = Λ/(Λτ)1/3, (27)

which matches the Hawking temperature (22) of the
black brane in the gravitational description. The ideal
stress tensor (26) is completely isotropic. Subleading
terms in the result (24) show that the transverse pressure
differs from the longitudinal pressure when viscous ef-
fects are taken into account. In particular, as mentioned
above, first order viscous corrections make the transverse
pressure larger than the longitudinal pressure.

To facilitate a quantitative comparison between our
numerical results for the stress tensor and the late-time
hydrodynamic expansions, Fig. 6 shows the energy den-
sity and pressures for c = 1/4, 1 and 3/2, with the cor-
responding hydrodynamic forms (24) plotted on top of
the numerical data. The plots start at time τ = τf . In
all three plots, one clearly sees the stress-energy com-
ponents approach their hydrodynamic approximations.
Moreover, in all plots one sees a substantial anisotropy
even at late times where a hydrodynamic treatment is
applicable. In other words, the effect of viscosity is very
evident in these results.

Looking at Fig. 6, for time τ = τf and c = 1/4, one
sees that the transverse and longitudinal pressures are
almost equal and opposite in magnitude at this time. So
the system is initially very far-from-equilibrium. How-
ever, for c = 3/2 the pressures are both positive, and
system is much closer to equilibrium at τf . At first sight
this might seem peculiar: how can it be that for larger
values of c, where the size of the perturbation in the 4d
geometry is huge, the system takes less time to reach local
equilibrium! Qualitatively, this apparent puzzle is easy
to understand. For large c, the changing geometry does
more work on the system and consequently the system
reaches a higher effective temperature. Because SYM is a

Janik, Peschanski; Kinoshita, Mukohyama, Nakamura; Booth, Heller, Spalinski



Case II: Relaxation time
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FIG. 6: Energy density, longitudinal and transverse pressure, all divided by N2
c /2π2, as a function of time for c = 1/4 (left),

c = 1 (middle) and c = 3/2 (right). From top to bottom, the curves are energy density (blue), transverse pressure (green), and
longitudinal pressure (red). The dashed black lines in each plot show the second order viscous hydrodynamic approximation
(24) to the different stress tensor components. Note the significantly different ordinate ranges in the three plots; the size of the
difference between the transverse and longitudinal pressure grows with increasing c.

c −2 −3/2 −1 −1/2 −1/4 1/4 1/2 1 3/2 2

τ∗ 2.2 2.3 2.4 2.7 3.1 3.1 2.7 2.4 2.3 2.2

T∗ 0.93 0.77 0.60 0.40 0.27 0.27 0.41 0.62 0.80 0.97

Λτ∗ 3.1 2.5 1.9 1.2 0.87 0.89 1.3 1.9 2.6 3.3

(τ∗−τi) T∗ 2.0 1.7 1.4 1.1 0.84 0.85 1.1 1.5 1.8 2.1

(τ∗−τf ) T∗ 0.00 0.05 0.11 0.19 0.24 0.24 0.20 0.11 0.04 0.00
P⊥(τf )−P||(τf )

E(τf ) 0.06 −0.03 −0.22 −0.56 −1.1 1.6 0.91 0.47 0.24 0.13

TABLE I: Quantities characterizing the relaxation to equilibrium, for various values of the boundary perturbation amplitude
c. The relaxation time τ∗ (in units of ∆) is the time at which the transverse and longitudinal pressures deviate from their
hydrodynamic values (24) by less than 10%. T∗ is the temperature at time τ∗, and Λ is the scale appearing in the hydrodynamic
expansion (24) (both measured in units of ∆−1). The quantity (τ∗−τi) T∗ measures the total time in units of T∗ required to
produce the plasma and relax to near local-equilibrium. The quantity (τ∗−τf ) T∗ measures the time in units of T∗ required
for the plasma to relax after the deformation in the geometry ceases. The quantity

ˆ
P⊥(τf )− P||(τf )

˜
/E(τf ) is the pressure

anisotropy, relative to the energy density, at time τf .

conformal theory, relaxation times for non-hydrodynamic
degrees of freedom must scale inversely with the temper-
ature, and hence must vanish as the local energy density
diverges. Therefore, in the c → ∞ limit the system will
always be very close to local equilibrium — even while
the 4d geometry is changing — and the anisotropy in
the pressures will vanish immediately at τf . As a con-
sequence, one learns little about the physics of the re-
laxation of non-hydrodynamic degrees of freedom in the
c→∞ limit.

Table I shows how various quantities characterizing the
relaxation of the plasma depend on the boundary pertur-
bation amplitude c, within the range [−2, 2]. Included in
the table is the time τ∗, beyond which the stress ten-
sor agrees with the hydrodynamic approximation (24) to
within 10%. Also shown is the temperatures T∗ at time
τ∗, the scale Λ measured in units of τ∗, and the time

intervals τ∗−τi and τ∗−τf measured in units of T∗.
From the table, one sees that as the magnitude of c

increases, so does the temperature T∗. Moreover, as the
magnitude of c increases, one sees that the time scale τ∗
approaches τf = 2.25. In particular, for |c| = 2 the stress
tensor is already within 10% of its hydrodynamic limit
at τf . As discussed above, both of these features are
to be expected. Increasing |c| means that the changing
geometry does more work on the system, producing a
larger energy density, and consequently the relaxation
times of non-hydrodynamic degrees of freedom decrease.
In all cases presented in Table I, the relevant dynamics
— from the production of the plasma to its relaxation to
near local equilibrium (where hydrodynamics applies) —
occur over a time τ∗ − τi ! 2/T∗.

From Table I, one also sees that for |c| ! 1/2 the time
scale τ∗ at which a hydrodynamic treatment becomes ac-

τ* = hydro onset time
T* = initial hydro temperature

c → ∞:  τ*→ τf, T*→ ∞, “instantaneous” relaxation to local equilibrium
c → 0 :  τ* ∼ Δ/√c, τ*T* ∼O(1)

Λτ* ≥ 0.9 always ➡ limit of validity of hydro controlled by relaxation of 
non-hydro modes, not by growth of higher-order viscous terms



Open questions

• Sensitivity to choice of boundary time dependence?
• wider range of amplitudes

• periodic forcing

• Precise connection between entropy & apparent horizon area?
• ambiguities in definition of non-equilibrium entropy

• foliation dependence of apparent horizon area

• Feasibility of evolving anisotropic & inhomogeneous geometries?
• non-boost invariant colliding shocks

• finite expanding fluids

• turbulent driven systems

• Relevance for heavy ion collisions?


