Horizon formation and far-from-equilibrium dynamics in strongly coupled plasma

Laurence G. Yaffe

University of Washington

based on work with Paul Chesler: arXiv:0906.4426, arXiv:0906.4426

KITP, 7/17/09

- Equilibrium (\mathcal{N} = 4 SYM)
 - equation of state
 - correlation lengths, screening
 - flavor physics
 - finite volume
 - confinement/deconfinement
 - chemical potentials
 - rotation

(static, Euclidean signature)

SUGRA mode	$\mathcal{J}_{R_y}^{CR_t}$	SYM operator	$mass/\pi T$	
G ₀₀	0^{++}_{+}	T_{00}	2.3361	
a	0^{+-}_{-}	$\operatorname{tr} E \cdot B$	3.4041	
G_{ij}	2^{++}	T_{ij}	3.4041	
ϕ	0^{++}_{+}	L	3.4041	
G_{i0}	1+-	T_{i0}	4.3217	
B _{ij}	0^{-+}_{-}	\mathcal{O}_{ij}	5.1085	
C_{ij}	$0^{}_{+}$	\mathcal{O}_{30}	5.1085	
B_{i0}	1	\mathcal{O}_{i0}	6.6537	
C_{i0}	1-+	\mathcal{O}_{3j}	6.6537	
G_a^a	0^{++}_{+}	${ m tr}F^4$	7.4116	

- Equilibrium (\mathcal{N} = 4 SYM)
 - equation of state
 - correlation lengths, screening
 - flavor physics
 - finite volume
 - confinement/deconfinement
 - chemical potentials
 - rotation

• Near-equilibrium

(static, Euclidean signature)

SUGRA mode	$\mathcal{J}_{R_y}^{CR_t}$	SYM operator	mass/ πT	
G ₀₀	0^{++}_{+}	T_{00}	2.3361	
a	0^{+-}_{-}	$\operatorname{tr} E \cdot B$	3.4041	
G_{ij}	2^{++}	T_{ij}	3.4041	
ϕ	0^{++}_{+}	L	3.4041	
G_{i0}	1+-	T_{i0}	4.3217	
B _{ij}	0^{-+}_{-}	\mathcal{O}_{ij}	5.1085	
C_{ij}	$0^{}_{+}$	\mathcal{O}_{30}	5.1085	
B _{i0}	1	\mathcal{O}_{i0}	6.6537	
C_{i0}	1-+	\mathcal{O}_{3j}	6.6537	
G^a_a	0^{++}_{+}	${ m tr}F^4$	7.4116	

(real-time response, Minkowski signature)

- quasi-normal modes, late time expansions
- photo-emission
- second-order transport coefficients
- non-linear conductivity

• Probe dynamics

(classical string dynamics)

- heavy quark drag
- wakes, Brownian motion
- heavy meson stability, dispersion
- light quark jets

• Probe dynamics

(classical string dynamics)

- heavy quark drag
- wakes, Brownian motion
- heavy meson stability, dispersion
- light quark jets

- Far-from-equilibrium dynamics ???
 - plasma formation
 - early thermalization
 - turbulence

Non-equilibrium initial states

- Specify complete density matrix ρ ? Ugh!
- Pick geometry on initial Cauchy surface ? Ugh!
- Want "operational" description:

- . Specify time-dependent external fields
 - time-dependent dynamics

Anisotropy dynamics

Π

time-dep geometry

III

Π

 $|\mathcal{X}||$

 $\cdot x_{\perp}$

far-from-eq

 t_i

hydro regime

- Metric $g^{\mu\nu}$ = external field coupling to stress-energy $T^{\mu\nu}$
 - : time-dependent geometry \Rightarrow non-equilibrium $\langle T^{\mu\nu} \rangle$
- Case I: perfect spatial homogeneity, arbitrary anisotropy

$$ds^{2} = -dt^{2} + e^{f(t)}(dx^{2} + dy^{2}) + e^{-2f(t)} dz^{2}$$

• Case II: boost invariance & transverse homogeneity

$$ds^{2} = -d\tau^{2} + e^{\gamma(\tau)} dx_{\perp}^{2} + \tau^{2} e^{-2\gamma(\tau)} dy^{2}$$

$$\begin{pmatrix} \gamma \text{ proper time} & \text{rapidity} \end{pmatrix}$$

$$\langle T^{\mu\nu}(t, \mathbf{x}) \rangle = \begin{bmatrix} \varepsilon(t) & & \\ p_{\perp}(t) & & \\ & p_{\perp}(t) & \\ & & p_{\parallel}(t) \end{bmatrix}$$

Gravitational description

- Solve 5-*d* Einstein equations with time-dependent boundary condition $G^{AB} \rightarrow g^{\mu\nu}$ and simple initial condition (AdS or AdS-BH)
- Extract $\langle T^{\mu\nu} \rangle$ from sub-leading near-boundary asymptotics
- Note:
 - time-dependent boundary conditions produce dynamic event horizon
 - "Teleological" event horizon growth occurs outside causal future of boundary time dependence
 - event horizon area (pulled back to boundary) cannot. represent entropy in non-equilibrium setting

Practical issues (I)

- Coordinate choice:
 - X Bad: Fefferman-Graham or similar (r, t, x)
 - ✓ Good: Incoming Eddington-Finkelstein

$$ds^{2} = -A(v,r) dv^{2} + 2 dv dr + \Sigma(v,r)^{2} \left[e^{B(v,r)} (dx^{2} + dy^{2}) + e^{-2B(v,r)} dz^{2} \right]$$

- v = const. on incoming (radial) null geodesics
- $dv/dr = \frac{1}{2}A$ on outgoing (radial) null geodesics
 - $g' \equiv \partial_r g$ = directional derivative along incoming null geodesics,
 - $\dot{g} \equiv \partial_v g + \frac{1}{2}A \partial_r g$ = directional derivative along outgoing null geodesics
- Boundary conditions as $r \rightarrow \infty$:
 - Case I: $A \to r^2$, $\Sigma \to r$, $B \to f(v)$
 - Case II: $A \to r^2$, $\Sigma \to r \tau^{1/3}$, $B \to -\frac{2}{3} \ln \tau + \gamma(\tau)$

Einstein equations

- $R_{MN} \frac{1}{2} G_{MN}(R + 2\Lambda) = 0$
- Non-trivial components: *vv*, *rr*, *vr*, *zz*, *xx*+*yy*

→ 5 equations, 3 unknown functions (A, B, Σ)

• Need to separate dynamics from constraints

$$= \Sigma (\dot{\Sigma})' + 2\Sigma' \dot{\Sigma} - 2\Sigma^2 ,
0 = \Sigma (\dot{B})' + \frac{3}{2} (\Sigma' \dot{B} + B' \dot{\Sigma}) ,
0 = A'' + 3B' \dot{B} - 12\Sigma' \dot{\Sigma} / \Sigma^2 + 4 ,
0 = \ddot{\Sigma} + \frac{1}{2} (\dot{B}^2 \Sigma - A' \dot{\Sigma}) ,$$
 boundary value constraint
0 = $\Sigma'' + \frac{1}{2} B'^2 \Sigma ,$ initial value constraint

• N.B.: *A* = non-dynamical auxillary field

Practical issues (II)

• Need to solve for "velocities," $\partial_v B$, $\partial_v \Sigma$, and auxillary field A

$$\begin{split} \dot{\Sigma}(r,v) &= -\frac{2}{\Sigma(r,v)^2} \int_r dw \, \Sigma(w,v)^3 \\ \dot{B}(r,v) &= -\frac{3}{\Sigma(r,v)^{3/2}} \int_r dw \, \frac{B'(w,v)}{\Sigma(w,v)^{3/2}} \int_w d\bar{w} \, \Sigma(\bar{w},v)^3 \end{split}$$

- Discretize $r \rightarrow \infty$ system of coupled ODEs
- Must treat near-boundary behavior accurately
 match discretized numerics to large *r* asymptotics

$$A(r,v) = \sum_{n=0}^{\infty} [a_n(v) + \alpha_n(v)\log r] r^{2-n},$$

$$B(r,v) = \sum_{n=0}^{\infty} [b_n(v) + \beta_n(v)\log r] r^{-n},$$

$$\Sigma(r,v) = \sum_{n=0}^{\infty} [s_n(v) + \sigma_n(v)\log r] r^{1-n}.$$

Practical issues (III)

- Must remove residual reparameterize freedom: r → r + α(v)
 X Bad: fix coordinate location of event horizon
 - ✓ Good: fix $a_1 = 0$
- Must excise region surrounding singularity: $r < r_{\min}(v) < r_{\text{horizon}}(v)$
- Must choose specific boundary time dependence

Ex: $f(v) = \frac{1}{2}c \left[1 - \tanh(v/\tau)\right]$ $\gamma(\tau) = c h(\tau - \tau_0)^6 e^{-1/h(\tau - \tau_0)}$ $h(\delta \tau) = 1 - (\delta \tau)^2 / \Delta^2$

Case I: Results

Case I: Horizon area

Case I: Isotropization time

	1						
$ au T \ au_{ m iso} T \ au_{ m iso} / au$	0.23	0.31	0.41	0.52	0.65	0.79	0.94
$ au_{ m iso} T$	0.67	0.68	0.71	0.92	1.2	1.5	1.8
$ au_{ m iso}/ au$	3.0	2.2	1.7	1.8	1.8	1.9	1.9

T =final equilibrium temperature

 τ_{iso} = isotropization time

 τ = plasma creation time scale

 $\tau_{\rm iso} \approx 0.7/T \Rightarrow \tau_{\rm iso} \approx 0.5 \, {\rm fm}/c \, {\rm at} \, T \approx 350 \, {\rm MeV} \cdots$ relevant at RHIC???

Case II: Results

Case II: Hydro comparison

Case II: Relaxation time

С	-2	-3/2	-1	-1/2	-1/4	1/4	1/2	1	3/2	2
$ au_*$	2.2	2.3	2.4	2.7	3.1	3.1	2.7	2.4	2.3	2.2
T_*	0.93	0.77	0.60	0.40	0.27	0.27	0.41	0.62	0.80	0.97
Λau_*	3.1	2.5	1.9	1.2	0.87	0.89	1.3	1.9	2.6	3.3
$(\tau_* - \tau_i) T_*$	2.0	1.7	1.4	1.1	0.84	0.85	1.1	1.5	1.8	2.1
$(\tau_* - \tau_f) T_*$	0.00	0.05	0.11	0.19	0.24	0.24	0.20	0.11	0.04	0.00
$\left \frac{\mathcal{P}_{\perp}(\tau_f) - P_{ }(\tau_f)}{\mathcal{E}(\tau_f)} \right $	0.06	-0.03	-0.22	-0.56	-1.1	1.6	0.91	0.47	0.24	0.13

 τ_* = hydro onset time

 T_* = initial hydro temperature

 $c \to \infty$: $\tau_* \to \tau_f, T_* \to \infty$, "instantaneous" relaxation to local equilibrium $c \to 0$: $\tau_* \sim \Delta / \sqrt{c}, \tau_* T_* \sim O(1)$ $\Lambda \tau_* \ge 0.9$ always \Rightarrow limit of validity of hydro controlled by relaxation of

non-hydro modes, not by growth of higher-order viscous terms

Open questions

- Sensitivity to choice of boundary time dependence?
 - wider range of amplitudes
 - periodic forcing
- Precise connection between entropy & apparent horizon area?
 - ambiguities in definition of non-equilibrium entropy
 - foliation dependence of apparent horizon area
- Feasibility of evolving anisotropic & inhomogeneous geometries?
 - non-boost invariant colliding shocks
 - finite expanding fluids
 - turbulent driven systems
- Relevance for heavy ion collisions?