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Fermi Liquids: RG perspective q p p

Landau Fermi Liquid: fixed point ofkF

Polchinski, Shankar 

Landau Fermi Liquid: fixed point  of 
LEEF around a Fermi surface. 

stable modular BCS instability

F

Free fermion CFT  at each point of 
the Fermi surface

stable, modular BCS instability

the Fermi surface.  

RG:  non-Fermi liquids (with other nontrivial fixed points) inevitable.q

Theory: Luttinger liquid (2d), coupling to gauge field(s), …….

Experiment: normal state of high Tc cuprates, heavy fermions …



Quasi-particles
Key concept in Landau theory:

Low energyLow energy 
excitations near a 
Fermi surface

Weakly interacting quasi-particles 

Thermodynamics, kinetic theory (transport) 

appear as poles in the single-particle Green function:

with Z finite



Non-Fermi liquids q
A sharp Fermi surface still exists. 

But quasi-particle picture breaks down generically

Example: normal state of optimally doped cuprates

In the phenomenological marginal Fermi liq id description

Anomalous thermodynamic and transports properties

In the phenomenological marginal Fermi liquid description

Z vanishes as               as the Fermi surface is approached |log|
1
ω

Example:  at the critical point for a continuous metal-
insulator transition

|log| ω

insulator transition

Z has to vanish on Fermi surface



What is the basic principle for NFL?p p

Suppose LEEF near a FS is controlled by aSuppose LEEF near a FS is controlled by a 
nontrivial fixed point: 

What do we need to know about the fixed point to 
characterize:

nature of low energy excitations, 
spectral functions, 
thermodynamics y
transport 

What should be the organizing principle for NFL?What should be the organizing  principle for NFL?



Can AdS/CFT help?p
Can we find new examples of non-Fermi liquids?

If yes, can it yield clues to an organizing principle?

Note:

While it would be nice to find gravity description of 
real-life systems, 

it might be difficult, if possible at all, in short term.

Thi i ht t bThis might not be necessary. 



AdS/CFT correspondence

Certain d-dimensional

Maldacena (1997), Gubser, Klebanov, Polyakov, Witten

A string theory in Certain d dimensional 
conformal field theory 

g y
(d+1)-dimensional
anti-de Sitter spacetime

Many examples in different dimensions are known 
including non-conformal ones.

Conformal symmetries AdS isometries

global symmetries gauge symmetries

Large N classical gravityLarge N, 
strongly coupling



IR/UV connection
where d-dim CFT lives 

∞=r ∞=r

AdS

E

CFT lives at the boundary of AdS.

AdS
r

Near the boundary
reflects UV physics of the boundary field theory

Deep in the interior:  
reflects IR physics of the boundary field theory



Finite density/temperature
d-dim CFT at finite density or temperature

∞=r

h i

AdS BH
r

event horizon

Putting a black hole in the 
center of  AdS



Gravity paradigm for many-body physics

1.   Many body  single or few body problem in BH 

2.   Highly QM, strong coupling phenomena geometry

Thermodynamics and transport without using quasi-particles, 

But from geometry

3 Large N strong A universal sector of 

But  from geometry

3. Large N, strong 
coupling limit, all
CFT

string theory:
Einstein gravity plus 

matter fieldsmatter fields



S h f ( ) F i li id f itSearch for (non)-Fermi liquids from gravity



Strategygy
Take a theory with a gravity dual, fermions and a U(1) global 
symmetry Put it at a finite charge densitysymmetry.  Put it at a finite charge density.

At T=0: 
Gravity side:
extremal
charged BHcharged BH 
in AdS4

h i l t ti l h i 1rμ: chemical potential horizon: 1=r

What kind of quantum liquid is that ?What kind of quantum liquid is that ? 
Fermi surface?  (non)-Fermi liquid?



To look for a  Fermi surface, we search for  sharp features 
t fi it t i f i i G f tiat finite momentum in  fermionic Green functions. 

S-S Lee

O ψ

∆ m+
2
3

(standard quantization)
2

q q

Two-point retarded 
function for O

Solving Dirac equation 
for ψ, extracting 
b d lboundary values

Universality of 2-point functions: 

do not depend on which specific theory and operator we use. 
Results will only depend on charge q and dimension ∆ .



Still a few words on the type of  theories we study:

1. Many known, yet many many many more believed to 
exist, but not known explicitly.    Examples:, p y p

d=3:  M2 brane theory,  ABJM .  ….

d 4 N 4 SYM Kl b Wittd=4:  N=4 SYM,  Klebanov-Witten,  ….

2.  contain both  elementary bosons and fermions coupled 
t Ab li fi ld ( l i l it N li it)to non-Abelian gauge fields (classical gravity: N ∞ limit) 

3.  Non-vanishing ground state entropy in the large N limit 

4. Very large, complicated system

We are probing a  tiny part of it.



Spinor retarded functions from 
igravity

Solve Dirac equation for the corresponding bulk spinor field

Son and Starinets
Iqbal, HL

Solve Dirac equation for the corresponding  bulk spinor field 
in the BH geometry.

Impose that at the horizon, the solution is an infalling wave. 

E pand the sol tion at the bo ndarExpand the solution  at the boundary  

t o independent eigen al estwo independent eigenvalues
of boundary functions



Fermi surfaces

MDC: Plot G(ω k) as function of k EDC: k=0 9 one indeed findsMDC: Plot G(ω,k) as function of k
for ω =-0.001 (for q=1, ∆=3/2) 

EDC: k=0.9, one indeed finds 
a quasi-particle-like peak

284999185.0≈Fk



Non-Fermi liquids
The peak moves with a dispersion relation 

with
3/2)0 6(32

3/2) 1,q ( 09.2
Δ
=Δ==z

S li b h i 1α

3/2) 0.6,q(5.32 =Δ==z

Scaling behavior: 1=α

1Landau Fermi liquid: 1==αz
Non-Fermi liquids !



At this stage: 

AdS/CFT is like a black box which just spits 
out numbers (or consistent spectral functions).

What controls these exponents?What controls these exponents? 

We have to dissect this black box.



Search for an organizing principle g g p p
for these exponents



Black hole geometry revisited

∞=r
AdSAdS4μω >> r>>1

(3-d conformal)

Conformal and Lorentz 
symmetries brokenμω ~ r~O(1)

μω << r-1<<1
(emergent scaling)

horizon
1=r

μω << (emergent scaling)



An emergent IR CFTg
One can in fact define a scaling limit to decouple the AdS2
region from the rest of geometryregion from the rest of geometry 

this is a long time limit, i.e. low frequency limitg q y

Standard lore of AdS/CFT:

Gravity in the AdS2 region a (0+1)-d CFT



An emergent IR CFTg
At low frequencies, the parent theory should be 

t ll d b t IR CFT !controlled by  an emergent IR CFT !

Power of AdS/CFT !  (from geometry)( g y)

Not much is known about this theory:

1.  It should have a zero temperature entropy

2.  It may have a single copy of Virasoro algebra with
a nontrivial central charge.  Lu, Mei, Pope, Vazquez-Poritz

Likely a chiral sector of a (1+1)-d CFT 



Correlation functions in IR CFT

AdS2 gravity Operator dimensions 
correlation functions

Each operator O in the parent theory becomes a family of operators    

correlation functions 

kOr
k

: momentum in transverse spatial directionsk
r

Conformal dimensions (in IR CFT): 

complex



Small frequency expansions (I)q y p ( )
To understand the scaling around Fermi surfaces, need to

t d th l f b h i f th l ti f tistudy the low frequency behavior of  the correlation functions.

For ordinary BH with a non-degenerate horizon: this can beFor ordinary BH with a non-degenerate horizon:  this can be 
done directly, a reflection that at a finite T  G is analytic in 
small ω. 

For extremal BH (T=0), this cannot be done straightforwardly: 

ω –dependent terms in the Dirac equation always become 
singular at the horizon. (small ω expansion cannot be donesingular at the horizon. (small ω expansion cannot be done 
Uniformly.)



Small frequency expansions (II)
∞=r

UV region ordinary expansion

1=r
IR region rescale radial

coordinates  using ω

1.   Separate the BH spacetime into two regions: IR , UV 

horizon 1=r

2.  Perform small ω expansions in each region separately 

3 M t h th t th l i i3.   Match them at the overlapping region.

Reminiscent of the standard RG picture



Small frequency expansions (III)Small frequency expansions (III)

Gk (ω): retarded function for        in the IR CFT, depending 
only on the AdS2 region.

kOr

(IR data)

)1()0()1()0( ,,, ±±±± bbaa all k-dependent and from solving the Dirac 
equation in the UV region perturbativelyequation in the UV region perturbatively. 

They are sensitive to the metric of the outer region. 

(UV data)



Generic k 

0)()0( ≠+ ka Small  ω expansion:(a’s and b’s all real) 

Non-analytic behavior  and dissipation are controlled by the 
IR CFT.  (clear from geometry)



Fermi surfaces (I)( )

Suppose at some kF 0)()0( =+ Fka
Near k small

outer region equation has a 
bound state at ω=0.

Near kF, small ω

i l i i i t th i ti l k li

kF, h1, h2, vF:  real (UV  data)

precisely giving rise to the quasi-particle peak we saw earlier. 
(now we know where the scaling exponents come from)



Relevant operator: singular FL
Suppose At Fermi momentum        is relevant 1<

FkδkOr

Quasi-particle-like peak never stable zero residue at the FermiQuasi particle like peak , never stable, zero residue at the Fermi 
surface.

No quasi-particle description singular FL



Irrelevant operator: FL
Suppose         is irrelevant 1>

Fkδ
FkOr )2/1( >

Fkν

In the limitIn the limit 

Linear dispersion relation, the quasi-particle becomes stable, 
non-vanishing residue at the Fermi surface.  

Quasi-particle picture applies, Fermi liquids. (v.s. Landau FL)

Luttinger theorem should apply , may have different
thermodynamic and transport properties compared to Landau FL.



Marginal operator: “Marginal Fermi liquids’’ 

Suppose          is marginal: 1=
Fkδ )2/1( =

FkνFkOr

l~
vF goes to zero and c(kF) has a pole

complex:
real:

1

1

c
c

Singularity of GR  : branch point, rather than a pole 



``Marginal Fermi liquid’’ for high Tc cuprates near 
optimal dopingoptimal doping.

Varma et al (1989)

Marginal FL



Landau Fermi liquid?q
2=

FkδFor (require fine tuning of parameters)

complex:
real:~

2

2

c
c

not q ite Landa Fermi liq id logarithmic term leads to a

complex:2c

not quite Landau Fermi liquid, logarithmic term leads to a
particle-hole asymmetry 



Summary: IR datay
Scaling exponents
near the Fermi surface

Operator dimensions 
i th IR CFT near the Fermi surface in the IR CFT

relevant operator Singular Fermi liquidrelevant operator Singular Fermi liquid 

irrelevant operator Fermi liquidirrelevant operator Fermi liquid 

Marginal operator Marginal Fermi liquidMarginal operator Marginal Fermi liquid 

L d F i li id i i tLandau Fermi liquid never arises in our story



A phenomenological descriptionp g p

∞=rUV region

IR region

horizon 1=r

Our GR can be written as  

Real, UV data,   analytic in ω



Separate O into UV and IR part 

UV physics mixing  between UV/IR

x+ + xx + …..GR   =

Other NFLs may be understandable in this language.  



Imaginary exponent

is pure imaginary for small enough k wheniλν −= is pure imaginary for small enough k when  kk iλν −=

Note: no instability



Log-periodic behaviorLog periodic behavior

This leads to a discrete scaling symmetry andThis leads to a discrete scaling symmetry and 



So far:

Suppose at some kF 0)()0( =+ Fka outer region equation has a 
bound state at ω=0.

A   Fermi surface

what could in principle happen near the Fermi surface
given the analytic  structure of the correlation function. 



UV data: Fermi momentum
For what values of q and ∆, are  Fermi surfaces allowed?
How does k depend on q and ∆ ?How does kF depend on q and ∆ ?

For ∆ = 3/2

It always lies inside the regionIt always lies inside the region 
which  allows log-periodic 
behavior

Except for  (alternative quantization)

Note: the upper limit (which applies to any ∆ ) is saturated by 
free relativistic fermions. (suggests repulsive interactions) 



For fixed ∆ k increasesFor fixed ∆, kF increases 
with q.

For fixed q, kF decreases 
with ∆.



UV data: Distribution of kδUV data: Distribution of 
Fkδ

(∆) (∆)



UV data: Fermi Velocityy

Fermi velocity goes to zero as the marginal limit is approached, 
so does  the residue.



Summaryy
Scaling exponents
near the Fermi surface

Operator dimensions 
in the IR CFT near the Fermi surface in the IR CFT

We have mapped out the landscape of non-(Fermi)We have mapped out the landscape of non (Fermi) 
liquids in the landscape  of theories with  AdS dual.

Question:

Here we found an (0+1)-d IR CFT, while naively one wouldHere we found an (0 1) d IR  CFT, while naively one would 
expect a (1+1)-d CFT?

Any thought?



Many other interesting aspects I have not time to cover:

P ti l h l tParticle-hole asymmetry, 
formula for Fermi velocity, 
Disappearance of Fermi surfaces under relevantDisappearance of Fermi surfaces under relevant 
deformation of  the parent theory
Free fermion limit

Story for a charged bosons (new instability)

Free fermion limit 

statistics and instability 

Finite temperature 



Future questionsFuture questions

1 Density of states Thermodynamic properties1. Density of states, Thermodynamic properties 

2.  Scattering of quasi-particles 

3.  transport: conductivity … 

All in principle calculable, much more complicated

With all these data, plus insights from the bulk geometry

an organizing principle for NFLs.an organizing principle for NFLs. 




