Holographic approach to the Quantum Hall Effect

Per Kraus (UCLA)

Mainly based on: 0809.1876 (Davis, P.K., Shah) 0905.438 (Alanen, Keski-Vakkuri, P.K, Suur-Uski).

<u>Introduction</u>

- AdS/CFT ideas are being profitably applied to problems of interest in nuclear and condensed matter physics.
- New approach to tackling strongly coupled field theories.
- Integer and fractional QHE intensely studied since early 80s. Still open questions, some involving strong coupling.
- Can we learn something from gauge/gravity duality?

QHE primer

 Standard setup: D=2+1 system of electrons at large B and small T

Measure longitudinal and transverse conductivities as function of B

$$j_i = \sigma_{ij} E_j$$
 $\rho_{ij} = \sigma_{ij}^{-1}$

(Tsui, 1990)

Along plateaus:
$$ho_{xy}=\left(rac{h}{e^2}
ight)rac{1}{
u}$$
 $ho_{xx}=0$

Transitions occur when: $\nu = \frac{nhc}{eB}$

 ρ_{xy} jumps to a new value and ρ_{xx} becomes nonzero

In a pure system electrons inhabit Landau levels:

elementary computation: $\sigma_{xy}=rac{
ho}{B}$ $\sigma_{xx}=0$

no plateaus:

real system has disorder and interactions:

How does this mess give rise to quantized plateaus?

Compute effective action for EM field

- gapped electron spectrum > local action
- organize in derivative expansion
- DC response controlled by single derivative part

- k arbitrary at this stage
- nonzero k requires broken parity (e.g. from B)

Key point: k unchanged by any continuous deformation of theory that preserves gap

Thinking of changing B as one such deformation, this immediately explains existence of plateaus

$$\sigma_{xy}=rac{k}{2\pi}$$
 $\sigma_{xx}=0$

How do we compute k?

Consider case in which we can smoothly turn off disorder and interactions while maintaining gap

Presence of gap implies n filled Landau levels

$$k=rac{2\pi
ho}{B}=n$$
 integer QHE

Fractional QHE occurs when we can't smoothly turn off disorder and interactions

- nonzero k requires some delocalized states
- k jumps when Fermi energy crosses these levels plateau transition
- Temperature smooths out transitions:

Slope at transition:

$$\frac{\partial
ho_{xy}}{\partial T} \sim \frac{1}{T^{3/7}}$$

Same exponent measured in variety of integer and fractional transitions

(Tsui et. al.)

Universal conductivity

At critical B, evidence of universal conductivities, independent of T:

$$\sigma_{xy}^c = (n-rac{1}{2})rac{e^2}{h}$$
 $\sigma_{xx} = rac{e^2}{2h}$

Quantum critical point

- Behavior viewed as evidence for scale invariant theory at the transition.
- Dynamical exponent z=1
- For integer effect, understanding in terms of delocalization transition. Numerical computation of 3/7 exponent and critical conductivities.
- Fractional case requires simultaneous treatment of interactions and disorder. Hard.

Lesson: to generate QHE transitions we need a system with a gap and broken parity, and a knob that lets us tune the gap to zero

Simple realization: charged fermions where knob = fermion mass

Realize in string theory via intersecting branes

Intersecting branes

On a stack of N Dp-branes lives a p spatial dimensional U(N) gauge theory with with matter in the adjoint representation

Intersecting branes

On two intersecting stacks there is additional matter confined to the intersection and transforming in the bifundamental representation

Think of photon as U(1) gauge field on yellow stack

D-brane construction

D=2+1 fermions from D3-D7 intersection

#ND=6: non-susy, but no tachyons or massless scalars

$$m_{fermion} = rac{L}{2\pilpha'}$$

Transition corresponds to varying L through 0: $m\psi\psi
ightarrow -m\psi\psi$

EM response

• Turn on D7 gauge field: $\mathcal{L} = \overline{\psi}^{i}(i\partial + m - A)\psi_{i}$

$$S_{eff}(A) = \int \frac{d^3p}{(2\pi)^3} \Pi^{\mu\nu}(p) A_{\mu}(p) A_{\nu}(-p)$$

$$\Pi^{\mu
u} = (p^{\mu} p^{
u} - p^2 g^{\mu
u}) \Pi_{even} + \epsilon^{\mu
u \lambda} p_{\lambda} \Pi_{odd}$$

$$\Pi_{even} = -rac{N}{2\pi}rac{1}{\sqrt{p^2}}\left[rac{1}{2}rac{|m|}{\sqrt{p^2}} - (rac{m^2}{p^2} - rac{1}{4})\arctan\left(rac{\sqrt{p^2}}{2|m|}
ight)
ight]$$

$$\Pi_{odd} = -\frac{N}{2\pi} \frac{m}{\sqrt{p^2}} \arctan\left(\frac{\sqrt{p^2}}{2|m|}\right)$$

$$\sigma_{ij}^T = rac{k}{2\pi} \epsilon_{ij} \qquad k = \left\{egin{array}{cc} rac{N}{2} sgn(m) & m
eq 0 \ 0 & m = 0 \end{array}
ight.$$

Conductivities:

$$\sigma^L_{ij} = {
m Im} rac{1}{\omega} \Pi^{ij}_{even} = \left\{egin{array}{cc} 0 & m
eq 0 \ rac{N}{16} \delta_{ij} & m = 0 \end{array}
ight.$$

Weak coupling transition

Transition is smoothed out at finite T

$$k(T) = N anh\left(rac{|m|}{2T}
ight) ext{sgn}(m)$$

$$\frac{\partial \sigma_{xy}}{\partial m} \sim \frac{1}{T} \quad \text{expt} : \sim \frac{1}{T^{.42}}$$

Including interactions

- At finite string coupling fermions have various short and long range interactions.
- Consider 4-fermi interactions:

$$L = \overline{\psi} i \partial \psi + m \overline{\psi} \psi + \frac{g^2}{2N} (\overline{\psi} \psi)^2$$

- For small g situation same as before.
- At strong coupling situation can change due to spontaneous parity breaking:

$$\langle \overline{\psi}\psi\rangle|_{m=0}\neq 0$$

Can be studied using standard large N methods

• Effective potential for $\sigma = -\frac{2g^2}{N} \langle \overline{\psi} \psi \rangle$

$$\frac{1}{N} \frac{dV_{eff}(\sigma)}{d\sigma} = \frac{\sigma}{g^2} - \frac{\sigma}{\pi^2} \left[\Lambda - \sigma \arctan\left(\frac{\Lambda}{\sigma}\right) \right]$$

Nontrivial solutions (hence SSB) for

$$g > g_c = \pi/\sqrt{\Lambda}$$

At low temperature, as m passes through zero we jump between minima, and hence transition remains discontinuous.

extstyle ext

second order phase transition

transition is smoothed out above critical temperature

$$rac{\partial \sigma^T}{\partial m} \sim rac{1}{(T-T_c)^{1/
u \, z}}$$

$$\nu z = 1 + O(\frac{1}{N})$$

Gravity side

Probe approximation:

$$N_3 \gg N_7$$
 $N_3, g_s N_3 \gg 1$

D3-branes
$$\longrightarrow$$
 $AdS_5 \times S^5$

D7-branes \longrightarrow surfaces embedded in $AdS_5 \times S^5$

brane potentially unstable to slipping off equator

 \bigcirc ξ fluctuations yield an AdS_4 scalar of mass

$$m^2R^2 = -4 < -\frac{9}{4}$$
 unstable

Stable end points break parity:

- ullet corresponds to $|\langle \overline{\psi}\psi \rangle|_{m=0}=\pm v$
- fermions are massive in stable vacua

Induced CS term

CS term for D7-brane gauge field comes from interaction with D3-brane flux

$$S_{WZ}=-rac{1}{2}(2\pilpha')^2N_7\int\!A\wedge F\wedge G_5=rac{k}{4\pi}\int\!A\wedge F$$
 $k=\pmrac{1}{2}N_3N_7$ since D7 sees half of D3 flux

agrees with weak coupling result

Finite temp: D3-brane becomes black brane

- Hall conductivity proportional to fraction of D3-flux passing through D7
- \bigcirc σ_{xx} nonzero only for black hole embeddings
- multiple D7s give multiple steps (or insulator)

Generalizations

Many other possible setups

Born-Infeld

e.g. D7-branes on
$$AdS_5 \times X$$
 (some of these are hopefully stable...)

- Study transport in general version of this setup
- After integrating over compact space, probe action has two parts:

$$S_{BI} = \int\! d^4x \; au(\xi(r)) \sqrt{-\det(g+F)}$$
 volume of compact space at fixed $oldsymbol{\xi}$

induced metric: $ds^2 = -U(r)dt^2 + \frac{dr^2}{U(r)} + V(r)dx^i dx^i$

Generalizations

Many other possible setups

e.g. D7-branes on
$$AdS_5 \times X$$
 (some of these are hopefully stable...)

- Study transport in general version of this setup
- After integrating over compact space, probe action has two parts:

$$S_{CS} = \frac{1}{4\pi} \int dk(r) \wedge A \wedge F$$

$$k = k(\infty) - k(r_+)$$

flux through probe

Critical Exponent

ullet slipping mode becomes AdS_4 scalar

$$S_{\xi}=rac{1}{2}\int\!d^4x\sqrt{-g}\left((\partial\xi)^2-m_{\xi}^2\xi^2
ight)$$

corresponds to operator of dimension

$$\Delta=rac{3}{2}+\sqrt{rac{9}{4}+m_{m{\xi}}^2}$$

slope
$$\sim \frac{1}{T^{3-\Delta}}$$

DC conductivity

extstyle ext

$$egin{align} \sigma_{xx} &= rac{\sqrt{
ho(r_+)^2/ au(r_+)^2+B^2+V(r_+)^2}}{B^2+V(r_+)^2} V(r_+) au(r_+) \ \sigma_{xy} &= rac{
ho(r_+)B}{B^2+V(r_+)^2} + rac{k(\xi_0)}{2\pi} \ &= -U(r)dt^2 + rac{dr^2}{U(r)} + V(r)dx^idx^i \ &= r_+ \sim T \qquad
ho(r_+) =
ho - rac{kB}{2\pi} \end{aligned}$$

- only other parameters are tension and flux as measured at the horizon

ullet D3-D7 example with $m_{fer}=B=
ho=0$:

$$\sigma_{xx} = au = rac{N_3 N_7}{3\pi^2}$$

ullet at weak coupling had: $\sigma_{xx}=rac{N_3N_7}{16}$

conductivity decreases by 1.85 in going from weak to strong coupling

AC conductivity at critical point

 \bigcirc no frequency dependence when $B = \rho = 0$

$$\sigma_{xx}(\omega) + i\sigma_{xy}(\omega) = \tau$$

$$egin{aligned} \sigma_{xx}(\omega) + i\sigma_{xy}(\omega) &= au - rac{ au}{2}(B \pm i
ho/ au)^2\,G(\omega) \ G(\omega) &= rac{1}{V(r_+)^2} + 2i\omega\int_{r_+}^{\infty}rac{dx}{U(x)}\left(rac{1}{V(r_+)^2} - rac{1}{V(x)^2}
ight)e^{2i\omega\int_{x}^{\infty}rac{dy}{U(y)}} \end{aligned}$$

high frequency asymptotics can also be computed in the general case

$$\sigma_{xx} + i\sigma_{xy} = \left(1 - \frac{3}{4} \frac{\left(B \pm i\rho/\tau\right)^2}{\omega^4} + \cdots\right)\tau$$

result is completely universal up to overall normalization

Numerical results

Numerical results

Numerical results

Conclusion

- Stringy quantum Hall transitions can be studied using probe branes and gauge/gravity duality
 - Would be interesting to model delocalization transitions, FQHE transitions, ...