
“An intro to chirality in active matter 
and how we describe it, 

both at the micro 
and macro levels.”

Assignment



Vincenzo Vitelli

Activity and chirality in continuum mechanics



Activity and chirality in continuum mechanics

 “I am, in general, not a big fan of 
introducing continuum theories  

as a first step.” 



Activity and chirality in continuum mechanics

Tough luck, 
my friend!

 “I am, in general, not a big fan of 
introducing continuum theories  

as a first step.” 



Activity and chirality in continuum mechanics

 “I am, in general, not a big fan of 
introducing continuum theories  

as a first step.” 



Activity and chirality in continuum mechanics

ar
X

iv
:0

91
1.

42
53

v2
  [

co
nd

-m
at

.so
ft]

  2
8 

A
pr

 2
01

0

Synchronization and Collective Dynamics in A Carpet of Microfluidic Rotors
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We study synchronization of an array of rotors on a substrate that are coupled by hydrodynamic
interaction. Each rotor, which is modeled by an effective rigid body, is driven by an internal torque
and exerts an active force on the surrounding fluid. The long-ranged nature of the hydrodynamic
interaction between the rotors causes a rich pattern of dynamical behaviors including phase or-
dering and self-proliferating spiral waves. Our results suggest strategies for designing controllable
microfluidic mixers using the emergent behavior of hydrodynamically coupled active components.

PACS numbers: 87.19.rh,07.10.Cm,47.61.Ne,87.80.Fe,87.85.Qr

Introduction. Microorganisms and the mechanical
components of the cell motility machinery such as cilia
and flagella operate in low Reynolds number conditions
where hydrodynamics is dominated by viscous forces [1].
The medium thus induces a long-ranged hydrodynamic
interaction between these active objects, which could lead
to emergent many-body behaviors. Examples of such
cooperative dynamical effects include sperms beating in
harmony [2], metachronal waves in cilia [3–5], formation
of bound states between rotating microorganisms [6], and
flocking behavior of red blood cells moving in a capillary
[7]. For a collection of free swimmers, such as microor-
ganisms [8], hydrodynamic interactions have been shown
to lead to instabilities [9, 10] that can result in complex
dynamical behaviors [10, 11]. In the context of simple
microswimmer models where hydrodynamic interactions
coupled to internal degrees of freedom can be studied
with minimal complexity, it has been shown that the cou-
pling could result in complex dynamical behaviors such
as oscillatory bound states between two swimmers [12],
and collective many-body swimming phases [13, 14].

A particularly interesting aspect of such hydrodynamic
coupling is the possibility of synchronization between dif-
ferent objects with cyclic motions [4, 5, 15–21]. This ef-
fect has mostly been studied in simple systems such as
two interacting objects or linear arrays and very little
is known about possible many-body emergent behaviors
of a large number of active objects with hydrodynamic
coupling. For example, in a recent experiment [22], Darn-
ton et al. observed chaotic flow patterns with complex
vortices above a carpet of bacteria with their heads at-
tached to a substrate and their flagella free to interact
with the fluid (see also [23]). On the other hand, recent
advances from micron-scale magnetically actuated tails
[24] to synthetic molecular rotors [25] now allow fabrica-
tion of arrays of active tails that can stir up the fluid. It
is therefore very important to explore the possible com-
plexity of the phase behavior of such an actively stirred
microfluidic system.

Here, we consider a simple generic model of rotors [26]
positioned on a regular 2D array on a substrate and study
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FIG. 1: (Color online). Schematic representation of the array
of rotors. Inset: an immobilized bacterium with active flag-
ella as a possible realization of a rotor that can exert both a
tangential drag and an active radial force on the fluid.

their collective dynamics numerically. We find that the
long-ranged hydrodynamic interactions could either en-
hance or destroy ordering, depending on the degree of
a built-in geometric frustration that originates from the
interaction of the rotors with the fluid. More specifi-
cally, our model adopts a fully synchronized state when
the frustration is weak, and a randomly disordered state
when it is maximally frustrated. Moreover, the dynam-
ics of the system leads to self-proliferating spiral waves
between the above two limiting behaviors. We also take
into account thermal fluctuations of the rotors and map
out the phase diagram of the system as a function of
temperature and the degree of frustration.
Model and Dynamical Equations. We consider an ar-

ray of rotors that are assumed to be spherical beads of
radius a moving on circular trajectories of radius b, which
are positioned on a rectangular lattice of base length d
and at a height h above a substrate (see Fig. 1). The i-th
rotor is anchored at ri0 to the surface of the substrate,
which we take to be the xy-plane. The instantaneous
position of the rotating bead is ri = ri0 + bni + hez,
where the unit vector ni(t) = (cosφi(t), sinφi(t), 0) gives
the orientation of the arm of the rotor. Because of
the constraint that the bead is only allowed to move
on the circular orbit of radius b, the velocity of the
rotor can be written as vi = b dni

dt = b dφi

dt ti, where
ti = ez × ni = (− sinφi, cosφi, 0) is the unit vector tan-
gent to the trajectory.
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How do you understand and model “phase” transitions ?



What is elasticity ?
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Odd elasticity in chiral active solids
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.

Kijmn
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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Odd elasticity in chiral active solids
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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If Elastic Energy
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.

Kijmn
<latexit sha1_base64="LiWpi/Gi9vMIGU8Uaolvv49hZLU=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4Gmbaoa27ohvBTQX7gHYomTTTxiaZMckIZehPuHGhiFt/x51/Y6atoKIHLhzOuZd77wliRpV2nA8rt7K6tr6R3yxsbe/s7hX3D9oqSiQmLRyxSHYDpAijgrQ01Yx0Y0kQDxjpBJOLzO/cE6loJG70NCY+RyNBQ4qRNlL3apDSWy5mg2LJsc/q1bJXhY7tODW37GakXPMqHnSNkqEElmgOiu/9YYQTToTGDCnVc51Y+ymSmmJGZoV+okiM8ASNSM9QgThRfjq/dwZPjDKEYSRNCQ3n6veJFHGlpjwwnRzpsfrtZeJfXi/RYd1PqYgTTQReLAoTBnUEs+fhkEqCNZsagrCk5laIx0girE1EBRPC16fwf9Iu227Fdq69UuN8GUceHIFjcApcUAMNcAmaoAUwYOABPIFn6856tF6s10VrzlrOHIIfsN4+AaPqkF4=</latexit>

Hooke’s law

Elastic Energy

Symmetry is a consequence of potential elastic energy

Energy conservation and other prejudices

f =
1

2
Kijmnuijumn

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



What if energy is not conserved ?

Odd elasticity in chiral active solids

Authors
A�liations

The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
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ics that we dub Odd Elasticity, which breaks the
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allows for the treatment of active systems. We
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phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:
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where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
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not only non-conservative, but in addition have strain-
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In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
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then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
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breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
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been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
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where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.

Visual linear elasticity in 2D



Odd elasticity in chiral active solids

Authors
A�liations

The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.

Visual representation of strain



Odd elasticity in chiral active solids

Authors
A�liations

The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.

dilation

Visual representation of strain



Odd elasticity in chiral active solids

Authors
A�liations

The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.

dilation

Visual representation of strain



Odd elasticity in chiral active solids

Authors
A�liations

The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.

dilation rotation

Visual representation of strain



Odd elasticity in chiral active solids

Authors
A�liations

The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke
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With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
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zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
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path are the same, the conservative forces due to Ke
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by contrast, makes a nonzero contribution given by:
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phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:
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where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
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With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke
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been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:
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where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:
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where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.

Assumption 1: Isotropy

Let’s start from scratch

�a = Kab ub
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.

Assumption 2: Deformation Dependence

Let’s start from scratch

�a = Kab ub
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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dw =� �ijduij (1)
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1

dw =� �ijduij (1)

wcycle =�
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1

Active

F = �(kr̂+ ko'̂)�r
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1

F = �(kr̂+ ko'̂)�r
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1

F = �(kr̂+ ko'̂)�r

F = (�kâ+ koâ⇤)â · �x
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D. Microscopic Model

We use the following force law in our microscopic mod-
els which give rise to odd elasticity. For a spring of rest
length ` which connects two particles at locations x and
y, the force on particle y as a function of the separation
�x = y � x is given by:

F(�x) = �
✓
k
�x

|�x| + ko
�x⇤

|�x|

◆
(|�x|� `), (6)

where �x⇤
i = ✏ij�xj . The first term, proportional to k,

is familiar hooks law, and the second term, proportional
to ko, supplies a force perpendicular to the direction of
the bond.

As examples, we consider this force law in the context
of two di↵erent lattice geometries. First, we place the
springs on a triangular lattice with lattice spacing `. The
resulting moduli are

B = 2µ =

p
3

2
k

A = 2Ko =

p
3

2
ko

Second, we consider a honeycomb lattice with next
nearest neighbor springs. The nearest neighbor springs
have spring constants k1 and ko1, and the next nearest
neighbor springs have spring constants k2 and ko2. The
resulting moduli are:

B =
k1 + 6k2
2
p
3

A =
ko1 + 6ko2
2
p
3

µ =

p
3k2
2

Ko

p
3ko2
2

.

To obtain these analytically coarse grained results, we
use the following procedure. Consider a lattice with n
particles per unit cell. For simplicity, we set the lattice
spacing to 1. In the harmonic approximation, the force
on each particle are given by the dynamical matrix ex-
pression:

F↵
i (R) = �

X

R0

D↵�
ij (R�R0)u�

j (R
0), (7)

where there is an implicit summation over repeated in-
dices. The upper Greek index labels the particle in the
unit cell and runs over ↵ = 0, . . . , n � 1, and the lower
Latin index labels spatial dimension i = x, y. The ma-
trix D↵�

ij (R) is the dynamical matrix and is determined
by the inter-particle interactions and geometry of bonds.
The Fourier transform of Eq. (??) gives:

F↵
i (q) = �D↵�

ij (q)u�
j (q). (8)

For the triangular lattice we consider, we have:

Dij(q) = (k�ik + ko✏ik)Akj(q), (9)

where

Axx(q) =3� 2 cos(qx)� cos
⇣qx
2

⌘
cos

 p
3qy
2

!

Ayy(q) =2� 3 cos
⇣qx
2

⌘
cos

 p
3qy
2

!

Axy(q) =Ayx =
p
3 sin

⇣qx
2

⌘
sin

 p
3qy
2

!
.

For the hexagonal lattice, we have

D↵�
ij (q) =(k1�ik + ko1✏ik)B

↵�
kj (q)

+ (k2�ik + ko2✏ik)C
↵�
kj (q),

where

B00
ij =B11

ij =
3

2
�ij

B01
ij =(B10)†ij

=
1

4

 
�1� eiqy � 4e

�i
⇣p

3qx
2 � qy

2

⌘ p
3
�
1� eiqy

�
p
3
�
1� eiqy

�
�3
�
1� eiqy

�

!

C00
ij =C11

ij =

✓
Ayy Ayx

Axy Axx

◆

C01
ij =(C10)†ij = 0.

To determine the elastic tensor from the dynamical
matrix, we proceed as follows. First, we perform a change
of basis such that v↵i = U↵�u�

i , with

U↵� =
1

n

0

BBB@

1 1 1 1 · · · 1
�1 n� 1 �1 �1 · · · �1
�1 �1 n� 1 �1 · · · �1
...

. . .

1

CCCA
. (10)

Notice that v0i is the center of mass coordinate. (We
have assumed, for simplicity, that all the particles are of
equal mass). We will denote the dynamical matrix in this
basis by D̃↵�

ij (q). We will use an upper case Latin index
to denote the indices A = 1, . . . , n� 1.

Notice that v0j may actually be large (compared to a

lattice spacing, which we set equal to 1), but qi and vAi
are assumed small. Furthermore D̃↵0

ij (0) = D̃0�
ij (0) = 0,

and
@D̃00

ij

@qm

����
q=0

= 0. Therefore, expanding to lowest order

in small quantities gives:

triangular lattice 

Beam violates: 
(1) Energy Conservation 
(2) Angular momentum Conservation

Linear Momentum conserved
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Hinge violates: 
(1) Energy Conservation

Microscopic model II: active hinges

Linear momentum conserved

A=0

Angular momentum conserved

No net torques Ko / a
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Non-reciprocity and chirality
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Odd elasticity in chiral active solids

Authors
A�liations

The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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D. Microscopic Model

We use the following force law in our microscopic mod-
els which give rise to odd elasticity. For a spring of rest
length ` which connects two particles at locations x and
y, the force on particle y as a function of the separation
�x = y � x is given by:

F(�x) = �
✓
k
�x

|�x| + ko
�x⇤

|�x|

◆
(|�x|� `), (6)

where �x⇤
i = ✏ij�xj . The first term, proportional to k,

is familiar hooks law, and the second term, proportional
to ko, supplies a force perpendicular to the direction of
the bond.

As examples, we consider this force law in the context
of two di↵erent lattice geometries. First, we place the
springs on a triangular lattice with lattice spacing `. The
resulting moduli are

B = 2µ =

p
3

2
k

A = 2Ko =

p
3

2
ko

Second, we consider a honeycomb lattice with next
nearest neighbor springs. The nearest neighbor springs
have spring constants k1 and ko1, and the next nearest
neighbor springs have spring constants k2 and ko2. The
resulting moduli are:

B =
k1 + 6k2
2
p
3

A =
ko1 + 6ko2
2
p
3

µ =

p
3k2
2

Ko

p
3ko2
2

.

To obtain these analytically coarse grained results, we
use the following procedure. Consider a lattice with n
particles per unit cell. For simplicity, we set the lattice
spacing to 1. In the harmonic approximation, the force
on each particle are given by the dynamical matrix ex-
pression:

F↵
i (R) = �

X

R0

D↵�
ij (R�R0)u�

j (R
0), (7)

where there is an implicit summation over repeated in-
dices. The upper Greek index labels the particle in the
unit cell and runs over ↵ = 0, . . . , n � 1, and the lower
Latin index labels spatial dimension i = x, y. The ma-
trix D↵�

ij (R) is the dynamical matrix and is determined
by the inter-particle interactions and geometry of bonds.
The Fourier transform of Eq. (??) gives:

F↵
i (q) = �D↵�

ij (q)u�
j (q). (8)

For the triangular lattice we consider, we have:

Dij(q) = (k�ik + ko✏ik)Akj(q), (9)

where

Axx(q) =3� 2 cos(qx)� cos
⇣qx
2

⌘
cos

 p
3qy
2

!

Ayy(q) =2� 3 cos
⇣qx
2

⌘
cos

 p
3qy
2

!

Axy(q) =Ayx =
p
3 sin

⇣qx
2

⌘
sin

 p
3qy
2

!
.

For the hexagonal lattice, we have

D↵�
ij (q) =(k1�ik + ko1✏ik)B

↵�
kj (q)

+ (k2�ik + ko2✏ik)C
↵�
kj (q),

where

B00
ij =B11

ij =
3

2
�ij

B01
ij =(B10)†ij

=
1

4

 
�1� eiqy � 4e

�i
⇣p

3qx
2 � qy

2

⌘ p
3
�
1� eiqy

�
p
3
�
1� eiqy

�
�3
�
1� eiqy

�

!

C00
ij =C11

ij =

✓
Ayy Ayx

Axy Axx

◆

C01
ij =(C10)†ij = 0.

To determine the elastic tensor from the dynamical
matrix, we proceed as follows. First, we perform a change
of basis such that v↵i = U↵�u�

i , with

U↵� =
1

n

0

BBB@

1 1 1 1 · · · 1
�1 n� 1 �1 �1 · · · �1
�1 �1 n� 1 �1 · · · �1
...

. . .

1

CCCA
. (10)

Notice that v0i is the center of mass coordinate. (We
have assumed, for simplicity, that all the particles are of
equal mass). We will denote the dynamical matrix in this
basis by D̃↵�

ij (q). We will use an upper case Latin index
to denote the indices A = 1, . . . , n� 1.

Notice that v0j may actually be large (compared to a

lattice spacing, which we set equal to 1), but qi and vAi
are assumed small. Furthermore D̃↵0

ij (0) = D̃0�
ij (0) = 0,

and
@D̃00

ij

@qm

����
q=0

= 0. Therefore, expanding to lowest order

in small quantities gives:

Phase Diagram

S1

S2

Hermitian dynamical matrix
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travelling to the right in an overdamped solid in which Ko

I
 ≫ A, B,  

μ (Supplementary Videos 2 and 3). The overdamped equation of 
motion is Γ _uj ¼ ∂iσij

I
, where Γ is a friction coefficient with a sub-

strate. (The momentum-conserving case of viscous damping, in 
which the dissipation is due to the relative velocity of solid particles, 
is treated in the Supplementary Information.) The coloured ellipses 
in Fig. 4a (cf. Fig. 2d) represent the strain in regions bounded 
by the thick, black lines, with the corresponding shear stresses 
shown in the row underneath. In Fig. 4b, we plot the stress and 
strain of a single deformed square as a function of time (indicated 
by colour) in the space of shear S1 and S2. Figure 4c,d shows the 
analogous plots for a wave travelling in a 3D odd-elastic medium  
(see Supplementary Information for a detailed treatment).

Figure 4b illustrates two crucial features of waves in an over-
damped odd-elastic solid. First, stress and strain are 90° out of 
phase due to the antisymmetric shear coupling Ko

I
. Thus, stress 

and strain in an overdamped odd-elastic wave mimic the phase 
delay between strain and velocity that enables wave propagation in 
underdamped passive solids. Second, the trajectory of the wave in 
strain space traces out a circle. This circle indicates the emergence 
of an autonomous, self-sustaining elastic engine cycle, in which the 
system converts internal energy into mechanical work to offset dis-
sipative losses (Fig. 2c). The speed of the wave, calculated in the 
Supplementary Information, can be intuited using a simple argu-
ment based on the balance of activity and dissipation. For a wave of 
amplitude R and wave number q, an infinitesimal piece of material 
traces out a circle in strain space of radius qR, and so the energy 
injected due to activity is 2Ko ´ area ¼ 2πKoðqRÞ2

I
. The energy loss 

due to dissipation in a single cycle is Γ × velocity × distance trav-
elled = 2πΓωR2. Balancing the energy injected with the energy dis-
sipated, one obtains the dispersion ω ¼ Koq2=Γ

I
, and therefore the 

group velocity dω=dq ¼ 2Koq=Γ
I

.
More generally, when B, μ, A and Ko

I
 are all non-zero, the equa-

tion of motion reads

!iωΓ
uk
u?

! "
¼ !q2

Bþ μ Ko

!Ko ! A μ

! "
uk
u?

! "
ð5Þ

where u∥ is the longitudinal displacement and u⊥  is the transverse 
displacement. To obtain the spectrum, we solve the secular equation 
corresponding to equation (5) (see Supplementary Information for 
the full expression). The active moduli enter the spectrum through 
the quantity J ¼ KoðKo þ AÞ

I
. The qualitative behaviour of the solid 

changes depending on whether J is above or below the threshold 
value (B/2)2. For large J, waves propagate but attenuate exponen-
tially with a rate proportional to B/2 + μ. When J is smaller than the 
threshold, there is a sharp cutoff below which the real part of the 
spectrum vanishes, and no waves propagate. The phase diagram in 
Fig. 5a summarizes the dynamic behaviour of isotropic odd-elastic 
solids, with the transition highlighted in red.

The matrix on the right-hand side of equation (5) times − q2 is 
known as the dynamical matrix. Because odd elasticity arises from 
linear, non-reciprocal interactions, the dynamical matrix is non-
Hermitian. As illustrated in Fig. 5b and Supplementary Video 4, 
the onset of odd-elastic waves displays characteristic features of 
non-Hermitian systems. In the absence of activity (circle symbol), 
the two eigenmodes are longitudinal and transverse. As activity 
increases, the eigenvectors are no longer orthogonal, and at the 
threshold ka=kj j ¼ 1ffiffi

3
p

I
, the eigenvectors become co-linear (star sym-

bol). The singularity caused by the degeneracy of the eigenvectors is 
a hallmark feature of non-Hermitian dynamics and is known as an 
exceptional point39,40. Above the exceptional point (square symbol), 
odd-elastic waves propagate with circular polarization, tracing out a 
spiral in shear space due to attenuation. In the limit ka=kj j ! 1

I
, the 

waves become self-sustaining and the spiral expands into an ellipse.

To understand the spectrum at shorter wavelengths, a micro-
scopic structure must be specified. In Fig. 5c, we consider an 
unbounded triangular lattice of springs with conservative spring 
constant k and odd spring constant ka. Analytic coarse-graining 
shows that this microscopic realization corresponds to a position 
(set by ka/k) on the dashed line in Fig. 5a. Elasticity describes the 
dynamics in the neighbourhood of Γ, and the ΓMKΓ cut in Fig. 5c 
shows how the wave propagation threshold varies depending on the 
wavevector within the Brillouin zone. At zero activity, the spectrum 
of the triangular lattice is pierced by Dirac points at K and Γ. The 
exceptional points at K split into exceptional rings that flow out-
ward. When ka=kj j ¼ 1ffiffi

3
p

I
 the exceptional rings merge along the line 

ΓK and the bands open. The middle inset of Fig. 5c highlights the 
regions in the Brillouin zone (light grey) for which waves can propa-
gate when, as an example, ka

k

!! !!
I

 is given by the horizontal dashed line. 
The surprising feature is the existence of waves at short length scales 
well below the critical value in the continuum theory of Fig. 5a.

Future work will explore applications of our findings to biome-
chanical systems8,41–43, kinematics of systems with transverse inter-
actions such as gyroscopes or vortex lattices44, viscoelastic quantum 
Hall states45 and active metamaterials14,46 functioning as emergent 
soft robots that harvest energy, transmit it using odd mechanical 
waves and perform work at designated sites. In addition, odd elas-
ticity provides an alternative approach to design energy-absorbing 
materials that exploit quasistatic cycles instead of rate-dependent 
deformations.
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Fig. 5 | Exceptional points and non-Hermitian elastodynamics. a, Phase 
diagram for waves in an overdamped odd-elastic solid. The red curves 
represent the boundary outside of which active waves can be sustained. 
c, A cut (ΓMKΓ) through the space of wavevectors (first Brillioun zone) 
of a triangular lattice with generalized Hookean springs. The microscopic 
activity in the springs is characterized by the ratio ka

k

!! !!
I

 between odd spring 
constant ka and conservative spring constant k. The threshold for active 
waves varies across the Brillioun zone, with the elastic limit describing 
the region near Γ. The middle inset shows the regions of the Brillouin 
zone (light grey) in which waves propagate (for ka

k

!! !!
I

 corresponding to the 
horizontal dashed line). b, The eigenmodes for three relative values of the 
elastic moduli, showing trajectories in shear space (S1 and S2, Fig. 4). At 
zero activity (circle symbol), the modes correspond to longitudinal and 
transverse waves, whose eigenvectors are orthogonal in S1–S2 space. At 
the exceptional point (star symbol), the eigenmodes become co-linear. 
Above the exceptional point (square symbol), the eigenmodes acquire a 
circular polarization, performing a spiral through simultaneous rotation and 
attenuation in strain space. See Supplementary Video 4.
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D. Microscopic Model

We use the following force law in our microscopic mod-
els which give rise to odd elasticity. For a spring of rest
length ` which connects two particles at locations x and
y, the force on particle y as a function of the separation
�x = y � x is given by:

F(�x) = �
✓
k
�x

|�x| + ko
�x⇤

|�x|

◆
(|�x|� `), (6)

where �x⇤
i = ✏ij�xj . The first term, proportional to k,

is familiar hooks law, and the second term, proportional
to ko, supplies a force perpendicular to the direction of
the bond.

As examples, we consider this force law in the context
of two di↵erent lattice geometries. First, we place the
springs on a triangular lattice with lattice spacing `. The
resulting moduli are

B = 2µ =

p
3

2
k

A = 2Ko =

p
3

2
ko

Second, we consider a honeycomb lattice with next
nearest neighbor springs. The nearest neighbor springs
have spring constants k1 and ko1, and the next nearest
neighbor springs have spring constants k2 and ko2. The
resulting moduli are:

B =
k1 + 6k2
2
p
3

A =
ko1 + 6ko2
2
p
3

µ =

p
3k2
2

Ko

p
3ko2
2

.

To obtain these analytically coarse grained results, we
use the following procedure. Consider a lattice with n
particles per unit cell. For simplicity, we set the lattice
spacing to 1. In the harmonic approximation, the force
on each particle are given by the dynamical matrix ex-
pression:

F↵
i (R) = �

X

R0

D↵�
ij (R�R0)u�

j (R
0), (7)

where there is an implicit summation over repeated in-
dices. The upper Greek index labels the particle in the
unit cell and runs over ↵ = 0, . . . , n � 1, and the lower
Latin index labels spatial dimension i = x, y. The ma-
trix D↵�

ij (R) is the dynamical matrix and is determined
by the inter-particle interactions and geometry of bonds.
The Fourier transform of Eq. (??) gives:

F↵
i (q) = �D↵�

ij (q)u�
j (q). (8)

For the triangular lattice we consider, we have:

Dij(q) = (k�ik + ko✏ik)Akj(q), (9)

where

Axx(q) =3� 2 cos(qx)� cos
⇣qx
2

⌘
cos

 p
3qy
2

!

Ayy(q) =2� 3 cos
⇣qx
2

⌘
cos

 p
3qy
2

!

Axy(q) =Ayx =
p
3 sin

⇣qx
2

⌘
sin

 p
3qy
2

!
.

For the hexagonal lattice, we have

D↵�
ij (q) =(k1�ik + ko1✏ik)B

↵�
kj (q)

+ (k2�ik + ko2✏ik)C
↵�
kj (q),

where

B00
ij =B11

ij =
3

2
�ij

B01
ij =(B10)†ij

=
1

4

 
�1� eiqy � 4e

�i
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�
p
3
�
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�
�3
�
1� eiqy

�

!

C00
ij =C11

ij =

✓
Ayy Ayx

Axy Axx

◆

C01
ij =(C10)†ij = 0.

To determine the elastic tensor from the dynamical
matrix, we proceed as follows. First, we perform a change
of basis such that v↵i = U↵�u�

i , with

U↵� =
1

n

0

BBB@

1 1 1 1 · · · 1
�1 n� 1 �1 �1 · · · �1
�1 �1 n� 1 �1 · · · �1
...

. . .

1

CCCA
. (10)

Notice that v0i is the center of mass coordinate. (We
have assumed, for simplicity, that all the particles are of
equal mass). We will denote the dynamical matrix in this
basis by D̃↵�

ij (q). We will use an upper case Latin index
to denote the indices A = 1, . . . , n� 1.

Notice that v0j may actually be large (compared to a

lattice spacing, which we set equal to 1), but qi and vAi
are assumed small. Furthermore D̃↵0

ij (0) = D̃0�
ij (0) = 0,

and
@D̃00

ij

@qm

����
q=0

= 0. Therefore, expanding to lowest order

in small quantities gives:
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travelling to the right in an overdamped solid in which Ko

I
 ≫ A, B,  

μ (Supplementary Videos 2 and 3). The overdamped equation of 
motion is Γ _uj ¼ ∂iσij

I
, where Γ is a friction coefficient with a sub-

strate. (The momentum-conserving case of viscous damping, in 
which the dissipation is due to the relative velocity of solid particles, 
is treated in the Supplementary Information.) The coloured ellipses 
in Fig. 4a (cf. Fig. 2d) represent the strain in regions bounded 
by the thick, black lines, with the corresponding shear stresses 
shown in the row underneath. In Fig. 4b, we plot the stress and 
strain of a single deformed square as a function of time (indicated 
by colour) in the space of shear S1 and S2. Figure 4c,d shows the 
analogous plots for a wave travelling in a 3D odd-elastic medium  
(see Supplementary Information for a detailed treatment).

Figure 4b illustrates two crucial features of waves in an over-
damped odd-elastic solid. First, stress and strain are 90° out of 
phase due to the antisymmetric shear coupling Ko

I
. Thus, stress 

and strain in an overdamped odd-elastic wave mimic the phase 
delay between strain and velocity that enables wave propagation in 
underdamped passive solids. Second, the trajectory of the wave in 
strain space traces out a circle. This circle indicates the emergence 
of an autonomous, self-sustaining elastic engine cycle, in which the 
system converts internal energy into mechanical work to offset dis-
sipative losses (Fig. 2c). The speed of the wave, calculated in the 
Supplementary Information, can be intuited using a simple argu-
ment based on the balance of activity and dissipation. For a wave of 
amplitude R and wave number q, an infinitesimal piece of material 
traces out a circle in strain space of radius qR, and so the energy 
injected due to activity is 2Ko ´ area ¼ 2πKoðqRÞ2

I
. The energy loss 

due to dissipation in a single cycle is Γ × velocity × distance trav-
elled = 2πΓωR2. Balancing the energy injected with the energy dis-
sipated, one obtains the dispersion ω ¼ Koq2=Γ

I
, and therefore the 

group velocity dω=dq ¼ 2Koq=Γ
I

.
More generally, when B, μ, A and Ko

I
 are all non-zero, the equa-

tion of motion reads

!iωΓ
uk
u?

! "
¼ !q2

Bþ μ Ko

!Ko ! A μ

! "
uk
u?

! "
ð5Þ

where u∥ is the longitudinal displacement and u⊥  is the transverse 
displacement. To obtain the spectrum, we solve the secular equation 
corresponding to equation (5) (see Supplementary Information for 
the full expression). The active moduli enter the spectrum through 
the quantity J ¼ KoðKo þ AÞ

I
. The qualitative behaviour of the solid 

changes depending on whether J is above or below the threshold 
value (B/2)2. For large J, waves propagate but attenuate exponen-
tially with a rate proportional to B/2 + μ. When J is smaller than the 
threshold, there is a sharp cutoff below which the real part of the 
spectrum vanishes, and no waves propagate. The phase diagram in 
Fig. 5a summarizes the dynamic behaviour of isotropic odd-elastic 
solids, with the transition highlighted in red.

The matrix on the right-hand side of equation (5) times − q2 is 
known as the dynamical matrix. Because odd elasticity arises from 
linear, non-reciprocal interactions, the dynamical matrix is non-
Hermitian. As illustrated in Fig. 5b and Supplementary Video 4, 
the onset of odd-elastic waves displays characteristic features of 
non-Hermitian systems. In the absence of activity (circle symbol), 
the two eigenmodes are longitudinal and transverse. As activity 
increases, the eigenvectors are no longer orthogonal, and at the 
threshold ka=kj j ¼ 1ffiffi

3
p

I
, the eigenvectors become co-linear (star sym-

bol). The singularity caused by the degeneracy of the eigenvectors is 
a hallmark feature of non-Hermitian dynamics and is known as an 
exceptional point39,40. Above the exceptional point (square symbol), 
odd-elastic waves propagate with circular polarization, tracing out a 
spiral in shear space due to attenuation. In the limit ka=kj j ! 1

I
, the 

waves become self-sustaining and the spiral expands into an ellipse.

To understand the spectrum at shorter wavelengths, a micro-
scopic structure must be specified. In Fig. 5c, we consider an 
unbounded triangular lattice of springs with conservative spring 
constant k and odd spring constant ka. Analytic coarse-graining 
shows that this microscopic realization corresponds to a position 
(set by ka/k) on the dashed line in Fig. 5a. Elasticity describes the 
dynamics in the neighbourhood of Γ, and the ΓMKΓ cut in Fig. 5c 
shows how the wave propagation threshold varies depending on the 
wavevector within the Brillouin zone. At zero activity, the spectrum 
of the triangular lattice is pierced by Dirac points at K and Γ. The 
exceptional points at K split into exceptional rings that flow out-
ward. When ka=kj j ¼ 1ffiffi

3
p

I
 the exceptional rings merge along the line 

ΓK and the bands open. The middle inset of Fig. 5c highlights the 
regions in the Brillouin zone (light grey) for which waves can propa-
gate when, as an example, ka

k

!! !!
I

 is given by the horizontal dashed line. 
The surprising feature is the existence of waves at short length scales 
well below the critical value in the continuum theory of Fig. 5a.

Future work will explore applications of our findings to biome-
chanical systems8,41–43, kinematics of systems with transverse inter-
actions such as gyroscopes or vortex lattices44, viscoelastic quantum 
Hall states45 and active metamaterials14,46 functioning as emergent 
soft robots that harvest energy, transmit it using odd mechanical 
waves and perform work at designated sites. In addition, odd elas-
ticity provides an alternative approach to design energy-absorbing 
materials that exploit quasistatic cycles instead of rate-dependent 
deformations.
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Fig. 5 | Exceptional points and non-Hermitian elastodynamics. a, Phase 
diagram for waves in an overdamped odd-elastic solid. The red curves 
represent the boundary outside of which active waves can be sustained. 
c, A cut (ΓMKΓ) through the space of wavevectors (first Brillioun zone) 
of a triangular lattice with generalized Hookean springs. The microscopic 
activity in the springs is characterized by the ratio ka

k

!! !!
I

 between odd spring 
constant ka and conservative spring constant k. The threshold for active 
waves varies across the Brillioun zone, with the elastic limit describing 
the region near Γ. The middle inset shows the regions of the Brillouin 
zone (light grey) in which waves propagate (for ka

k

!! !!
I

 corresponding to the 
horizontal dashed line). b, The eigenmodes for three relative values of the 
elastic moduli, showing trajectories in shear space (S1 and S2, Fig. 4). At 
zero activity (circle symbol), the modes correspond to longitudinal and 
transverse waves, whose eigenvectors are orthogonal in S1–S2 space. At 
the exceptional point (star symbol), the eigenmodes become co-linear. 
Above the exceptional point (square symbol), the eigenmodes acquire a 
circular polarization, performing a spiral through simultaneous rotation and 
attenuation in strain space. See Supplementary Video 4.
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D. Microscopic Model

We use the following force law in our microscopic mod-
els which give rise to odd elasticity. For a spring of rest
length ` which connects two particles at locations x and
y, the force on particle y as a function of the separation
�x = y � x is given by:

F(�x) = �
✓
k
�x

|�x| + ko
�x⇤

|�x|

◆
(|�x|� `), (6)

where �x⇤
i = ✏ij�xj . The first term, proportional to k,

is familiar hooks law, and the second term, proportional
to ko, supplies a force perpendicular to the direction of
the bond.

As examples, we consider this force law in the context
of two di↵erent lattice geometries. First, we place the
springs on a triangular lattice with lattice spacing `. The
resulting moduli are

B = 2µ =

p
3

2
k

A = 2Ko =

p
3

2
ko

Second, we consider a honeycomb lattice with next
nearest neighbor springs. The nearest neighbor springs
have spring constants k1 and ko1, and the next nearest
neighbor springs have spring constants k2 and ko2. The
resulting moduli are:

B =
k1 + 6k2
2
p
3

A =
ko1 + 6ko2
2
p
3

µ =

p
3k2
2

Ko

p
3ko2
2

.

To obtain these analytically coarse grained results, we
use the following procedure. Consider a lattice with n
particles per unit cell. For simplicity, we set the lattice
spacing to 1. In the harmonic approximation, the force
on each particle are given by the dynamical matrix ex-
pression:

F↵
i (R) = �

X

R0

D↵�
ij (R�R0)u�

j (R
0), (7)

where there is an implicit summation over repeated in-
dices. The upper Greek index labels the particle in the
unit cell and runs over ↵ = 0, . . . , n � 1, and the lower
Latin index labels spatial dimension i = x, y. The ma-
trix D↵�

ij (R) is the dynamical matrix and is determined
by the inter-particle interactions and geometry of bonds.
The Fourier transform of Eq. (??) gives:

F↵
i (q) = �D↵�

ij (q)u�
j (q). (8)

For the triangular lattice we consider, we have:

Dij(q) = (k�ik + ko✏ik)Akj(q), (9)

where

Axx(q) =3� 2 cos(qx)� cos
⇣qx
2

⌘
cos

 p
3qy
2

!

Ayy(q) =2� 3 cos
⇣qx
2

⌘
cos

 p
3qy
2

!

Axy(q) =Ayx =
p
3 sin

⇣qx
2

⌘
sin

 p
3qy
2

!
.

For the hexagonal lattice, we have

D↵�
ij (q) =(k1�ik + ko1✏ik)B

↵�
kj (q)

+ (k2�ik + ko2✏ik)C
↵�
kj (q),

where

B00
ij =B11

ij =
3

2
�ij

B01
ij =(B10)†ij

=
1

4

 
�1� eiqy � 4e

�i
⇣p

3qx
2 � qy

2

⌘ p
3
�
1� eiqy

�
p
3
�
1� eiqy

�
�3
�
1� eiqy

�

!

C00
ij =C11

ij =

✓
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◆

C01
ij =(C10)†ij = 0.

To determine the elastic tensor from the dynamical
matrix, we proceed as follows. First, we perform a change
of basis such that v↵i = U↵�u�

i , with

U↵� =
1

n

0

BBB@

1 1 1 1 · · · 1
�1 n� 1 �1 �1 · · · �1
�1 �1 n� 1 �1 · · · �1
...

. . .

1

CCCA
. (10)

Notice that v0i is the center of mass coordinate. (We
have assumed, for simplicity, that all the particles are of
equal mass). We will denote the dynamical matrix in this
basis by D̃↵�

ij (q). We will use an upper case Latin index
to denote the indices A = 1, . . . , n� 1.

Notice that v0j may actually be large (compared to a

lattice spacing, which we set equal to 1), but qi and vAi
are assumed small. Furthermore D̃↵0

ij (0) = D̃0�
ij (0) = 0,

and
@D̃00

ij

@qm

����
q=0

= 0. Therefore, expanding to lowest order

in small quantities gives:
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agents (robots) is not stable at long times if any amount
of reciprocal interactions is reinstated – the agents even-
tually align or anti-align (see Methods). The effect of
non-reciprocal interactions is apparently washed out at
long times.

Can many-body effects stabilize these time-dependent
states generated by non-reciprocal interactions? To an-
swer this question, we performed molecular dynamics
simulations of a binary mixture of many self-propelled
agents described by Eq. (1), where Jmn now depends on
whether the agents m and n belong to species A or B (e.g.,
the blue and red robots in Fig. 1). We choose intra-species
interactions that always promote alignment (i.e., JAA > 0
and JBB > 0). Depending on the values of JAB , JBA and
⌘, we observe several collective behaviors represented as
snapshots in Fig. 2a-d (see also SI Movie). We observe
(a) a disordered regime where the agents move in random
directions (b) a flocking regime where both populations
move in the same direction [32, 33], (c) an antiflocking
regime where populations A and B move in opposite direc-
tions [37–39] and (d) a chiral collective behavior where the
non-reciprocal agents move along trajectories approaching
circles as their number increases.

Our numerical results hint at the existence of time-
dependent many-body phases that are stable in the con-
tinuum limit. To study their nature and stability, we
construct hydrodynamic equations in the spirit of the
Toner-Tu model of flocking [33]. Our hydrodynamic the-
ory describes the densities ⇢A, ⇢B and the velocity fields
~vA, ~vB (strictly speaking, their polarizations) of a binary
active fluid with non-reciprocal interactions. Full expres-
sions can be found in the Methods and a microscopic
derivation in the SI. In the mean-field approximation,
where all quantities are assumed to be uniform, the equa-
tions of motion reduce to the dynamical system

@t

✓
~vA

~vB

◆
=

✓
↵A[~vA,~vB ] jAB

jBA ↵B [~vA,~vB ]

◆✓
~vA

~vB

◆
(2)

where jAB and jBA are rescaled inter-species interactions
while ↵A and ↵B are nonlinear functions of the velocities,
see SI. Both the densities and the intra-species interactions
are set to unity. We stress that the matrix in Eq. (2) is
not symmetric when the inter-species interactions are non-
reciprocal (i.e., jAB 6= jBA). The nonlinearity in Eq. (2)
allows the system to reach non-equilibrium steady-states.

Figure 2e-g shows the corresponding mean-field phase
diagram as a function of the reciprocal and non-reciprocal
parts of the inter-species interactions j± = [jAB ± jBA]/2
respectively. This phase diagram exhibits a disordered
phase (in gray), a flocking phase (in blue), an antiflock-
ing phase (in red), and a chiral phase (in purple). In
the SI, we prove that these phases are linearly stable
against velocity fluctuations over large ranges of parame-
ters. There is no direct transition between flocking and
antiflocking phases, except when the non-reciprocal in-
teractions j� = 0 vanish; instead, another phase always
appears in between. In addition to the chiral phase, we
find a swap phase (green region in Fig. 2f,g) where ~vA

and ~vB oscillate along a fixed direction and a phase where
both swap and chiral motions coexist (dark green). We
note in Fig. 2g the presence of a tetracritical point where
the (anti)flocking, chiral, swap and mixed chiral/swap
phases meet, whose origin is discussed in the SI. The
non-reciprocity of the microscopic model, manifested by
antisymmetric couplings in the hydrodynamic theory of
Eq. (2), is responsible for the onset of the chiral phase
through a peculiar phase transition mechanism unique to
non-equilibrium systems.

To elucidate the mathematical origin of the transition
mechanism, we linearize Eq. (2) by separating the veloci-
ties into a steady-state component and the fluctuations
around it. In momentum space, we obtain the linear
equation
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�~V�
�~V?
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where we have decomposed the velocity fluctuations
�~V = (�~vA, �~vB) into transverse and longitudinal com-
ponents �~V? and �~V�. To lowest order in wavevector k,
these components are decoupled [1, 40]. The phase transi-
tion from the flocking to the chiral phase occurs when the
two eigenmodes of the linear operator L?(k) describing
the relaxation of transverse velocity fluctuations become
collinear, see Fig. 2h. We now provide a heuristic expla-
nation of this mechanism.

In the presence of non-reciprocity, the restoring force
on ~vA is not equal in magnitude to the force on ~vB . As a
consequence, an antisymmetric perturbation (for which
the velocities ~vA and ~vB rotate in opposite directions,
see �V

s
? in Fig. 2h) does not generate a purely antisym-

metric response. Instead, a symmetric response is also
generated that consists in a rotation of ~vA and ~vB in
the same direction. By contrast, a symmetric perturba-
tion does not lead to any restoring force (irrespective of
non-reciprocity), because it corresponds to the Goldstone
mode of broken rotational symmetry. As the reciprocal
coupling j+ becomes smaller and smaller compared to
the non-reciprocal coupling j� (see Fig. 2i), it reaches a
critical value where all transverse perturbations lead to
a symmetric (solid-body) rotation of ~vA and ~vB with a
fixed angle between them. This heralds the onset of the
chiral phase. This critical value is a so-called exceptional
point [14] of L?(k). This coalescence of the modes of
a many-body system defines a class of dynamical phase
transitions that we dub exceptional transitions.

We contrast the exceptional transitions to the standard
mechanism of phase transition that underlies, for instance,
the transition from flocking to disordered phases (which
is formally equivalent to a ferromagnet/paramagnet tran-
sition). This mechanism can also lead to time-dependent
phases: Fig. 3a illustrates the flocking/swap transition
which is controlled by longitudinal fluctuations. These
fluctuations are less and less damped at k = 0, until at the
critical point they are completely suppressed: this marks
the onset of the transition. The growth rate ��(k = 0) of

Floquet stability analysis reveals that the chiral phase can be stabilized by many-body interactions
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Fig. 4. Exceptional-point enforced pattern formation.
The combination of the singular operators at an exceptional
point (where phase transitions occur) with convective terms
gives rise to pattern formation near the transition lines. This
singularity-enforced pattern-forming instability occurs when-
ever the convective terms lift the defectiveness of the linearized
operator. (a) Numerical phase diagram including the linear
stability analysis of the (anti)flocking and chiral phases. (b)
Normalized growth rate �(k)/�⇤ as a function of wavevector,
for different values of j+ at fixed j� [along the dashed line in
(a)]. A maximum growth rate �⇤ (computed independently
for each j+) is found at finite wavevector k⇤. The value of
k⇤ gives an estimation of the wavelength of the pattern near
the onset. (c) Mechanism of the singularity-enforced insta-
bility. The presence of an exceptional point, combined with
a linearized convective term, leads to a growth rate of the
form �± ' ±

p
ik� at the transition. Near the transition, this

implies the existence of finite-momentum instabilities (see also
Fig. 3b) We have used the same parameters as in figure 2 with
⌘/⌘c = 0.5, v0A = 0.06 and v0B = 0.01.

Binary robotic fluid  
with self-propulsion

2

agents (robots) is not stable at long times if any amount
of reciprocal interactions is reinstated – the agents even-
tually align or anti-align (see Methods). The effect of
non-reciprocal interactions is apparently washed out at
long times.

Can many-body effects stabilize these time-dependent
states generated by non-reciprocal interactions? To an-
swer this question, we performed molecular dynamics
simulations of a binary mixture of many self-propelled
agents described by Eq. (1), where Jmn now depends on
whether the agents m and n belong to species A or B (e.g.,
the blue and red robots in Fig. 1). We choose intra-species
interactions that always promote alignment (i.e., JAA > 0
and JBB > 0). Depending on the values of JAB , JBA and
⌘, we observe several collective behaviors represented as
snapshots in Fig. 2a-d (see also SI Movie). We observe
(a) a disordered regime where the agents move in random
directions (b) a flocking regime where both populations
move in the same direction [32, 33], (c) an antiflocking
regime where populations A and B move in opposite direc-
tions [37–39] and (d) a chiral collective behavior where the
non-reciprocal agents move along trajectories approaching
circles as their number increases.

Our numerical results hint at the existence of time-
dependent many-body phases that are stable in the con-
tinuum limit. To study their nature and stability, we
construct hydrodynamic equations in the spirit of the
Toner-Tu model of flocking [33]. Our hydrodynamic the-
ory describes the densities ⇢A, ⇢B and the velocity fields
~vA, ~vB (strictly speaking, their polarizations) of a binary
active fluid with non-reciprocal interactions. Full expres-
sions can be found in the Methods and a microscopic
derivation in the SI. In the mean-field approximation,
where all quantities are assumed to be uniform, the equa-
tions of motion reduce to the dynamical system
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where jAB and jBA are rescaled inter-species interactions
while ↵A and ↵B are nonlinear functions of the velocities,
see SI. Both the densities and the intra-species interactions
are set to unity. We stress that the matrix in Eq. (2) is
not symmetric when the inter-species interactions are non-
reciprocal (i.e., jAB 6= jBA). The nonlinearity in Eq. (2)
allows the system to reach non-equilibrium steady-states.

Figure 2e-g shows the corresponding mean-field phase
diagram as a function of the reciprocal and non-reciprocal
parts of the inter-species interactions j± = [jAB ± jBA]/2
respectively. This phase diagram exhibits a disordered
phase (in gray), a flocking phase (in blue), an antiflock-
ing phase (in red), and a chiral phase (in purple). In
the SI, we prove that these phases are linearly stable
against velocity fluctuations over large ranges of parame-
ters. There is no direct transition between flocking and
antiflocking phases, except when the non-reciprocal in-
teractions j� = 0 vanish; instead, another phase always
appears in between. In addition to the chiral phase, we
find a swap phase (green region in Fig. 2f,g) where ~vA

and ~vB oscillate along a fixed direction and a phase where
both swap and chiral motions coexist (dark green). We
note in Fig. 2g the presence of a tetracritical point where
the (anti)flocking, chiral, swap and mixed chiral/swap
phases meet, whose origin is discussed in the SI. The
non-reciprocity of the microscopic model, manifested by
antisymmetric couplings in the hydrodynamic theory of
Eq. (2), is responsible for the onset of the chiral phase
through a peculiar phase transition mechanism unique to
non-equilibrium systems.

To elucidate the mathematical origin of the transition
mechanism, we linearize Eq. (2) by separating the veloci-
ties into a steady-state component and the fluctuations
around it. In momentum space, we obtain the linear
equation
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where we have decomposed the velocity fluctuations
�~V = (�~vA, �~vB) into transverse and longitudinal com-
ponents �~V? and �~V�. To lowest order in wavevector k,
these components are decoupled [1, 40]. The phase transi-
tion from the flocking to the chiral phase occurs when the
two eigenmodes of the linear operator L?(k) describing
the relaxation of transverse velocity fluctuations become
collinear, see Fig. 2h. We now provide a heuristic expla-
nation of this mechanism.

In the presence of non-reciprocity, the restoring force
on ~vA is not equal in magnitude to the force on ~vB . As a
consequence, an antisymmetric perturbation (for which
the velocities ~vA and ~vB rotate in opposite directions,
see �V

s
? in Fig. 2h) does not generate a purely antisym-

metric response. Instead, a symmetric response is also
generated that consists in a rotation of ~vA and ~vB in
the same direction. By contrast, a symmetric perturba-
tion does not lead to any restoring force (irrespective of
non-reciprocity), because it corresponds to the Goldstone
mode of broken rotational symmetry. As the reciprocal
coupling j+ becomes smaller and smaller compared to
the non-reciprocal coupling j� (see Fig. 2i), it reaches a
critical value where all transverse perturbations lead to
a symmetric (solid-body) rotation of ~vA and ~vB with a
fixed angle between them. This heralds the onset of the
chiral phase. This critical value is a so-called exceptional
point [14] of L?(k). This coalescence of the modes of
a many-body system defines a class of dynamical phase
transitions that we dub exceptional transitions.

We contrast the exceptional transitions to the standard
mechanism of phase transition that underlies, for instance,
the transition from flocking to disordered phases (which
is formally equivalent to a ferromagnet/paramagnet tran-
sition). This mechanism can also lead to time-dependent
phases: Fig. 3a illustrates the flocking/swap transition
which is controlled by longitudinal fluctuations. These
fluctuations are less and less damped at k = 0, until at the
critical point they are completely suppressed: this marks
the onset of the transition. The growth rate ��(k = 0) of

Exceptional points plus convective terms generate pattern formation near phase boundaries
Floquet stability analysis reveals that the chiral phase can be stabilized by many-body interactions
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j± = [jAB ± jBA]/2
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