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Introduction: active matter

Active particles are able to extract and dissipate energy from their 
surroundings to produce systematic and coherent motion

§ Energy enters and	exits	the	system		à out	of	equilibrium

§ Energy is spent to	perform actions,	typically move	(self-propel)	
in	a	non-thermal	way

§ In	active	systems,	energy is injected and	dissipated in	the	bulk,	
not	from the	boundaries,	in	a	way that does not	explicitely
breaks	any simmety



What are we interested into ?

Collective	effects Single	swimmer	properties

Particle	interactions	are	
relevant

Typically,	local	interactions	
leads	to	(non-trivial)	emergent	
phenomena	on	much	larger	

scales

Inter-particles	interactions	are	
negligible/non-existent

Here we discuss collective effects!



Some fundamental distinctions

Momentum	is	NOT	conserved

DRY	(hydro	interaction DO	
NOT	matter)

Momentum	is	conserved

WET	(hydro	interactions	DO	
matters)

Crawling	critters

Quasi-2D suspensions

Relatively	high	Reynolds	
numbers	(birds,	fish)	?

(i.e.:	inertial	effects	dominates	
viscosity)

3D	suspensions

Especially	at	low	Reynolds	(i.e..	
Stokes regime)

Here we stay dry!



An (almost trivial) active system

No alignment between particles: active Brownian partilces (ABP)

Zero mean noise with delta-correlations

Equivalent system (at large scales): Run & Tumble particles

Warming up -- Simplest model for active particles ?



Warming up -- Simplest model for active particles ?

Persistent random walkers

lpers ~ v0 D

At length scales >> lpers

undistinguishable from 

a standard random walk



Life is hard: II Law of  thermodynamics 

At equilibrium you cannot rectify (i.e. extract work from 
thermal fluctuations

Active particles are out of  equilibrium!!

Throw in something below the persistence length scale

A. Sokolov et al., PNAS 107 969 (2010).
7

1 mm

•1-2 rotations per minute ,   Power about 1 femtowatt=10-15 Watt
•About 300 bacteria power the gear  



Active Brownian particles can rectify a-thermal motion



Add simple short range repulsion  to ABPs

Zero mean noise with delta-correlations

Fij = − f rij( ) r̂ij

II. Repulsion interactions: Motility induced phase 
separation (MIPS)



2 main control parameters

Peclet number (ratio between advection and diffusion rates) 

Occupied surface fraction

Clustering effects



MIPS: the Physical mechanism in a nutshell

In high density regions, crowding slows down the active 
particles effective speed

1. Fluctuations can spontaneously produce high and low density regions

2. Self-propelled particles accumulate where they move slower (think of  
pedestrians in a busy street)

3. Positive feedback between effective slowing down and increasing 
density

4. A (different w.r.t. alignment dominated systems) instability 
mechanism leading to phase segregation (without order)



Simple models for active particles

Interacting particles: short range repulsion (avoid your neighbours)

The system can undergo spontaneous phase separation and show clusters

Motility Induced Phase Separation (MIPS)

M.E. Cates, J. Tailleur, Ann. Rev. Cond. Matt. Phys. 6, 219-244 (2015)



A	transition	to	collective	motion!	
(when	t small	enough)

Szabo B, Szollosi GJ, Gonci B, Juranyi Z, Selmeczi D and Vicsek T 2006 Phys. Rev. E 74(6) 061908

Henkes S, Fily Y and Marchetti M C 2011 Phys. Rev. E 84(4) 040301

Go	with	the	flow:	Collisional	Vicsek	model



thanks to STARFLAG Project & Claudio Carere, Istituto Superiore di Sanità - Roma - Italy

Starlings flock - Predation attempt in Rome 

Flocking active matter
spontaneous symmetry breaking to collective motion



Some fundamental distinctions

Isotropic

Symmetry
Breaking	

e.g.:	Polar	and	nematic
collective motion

Go and look at your system. 
Do they show a symmetry breaking phase transition  to collective 
motion as parameters (density, motility, enviromental noise, etc…) are 
changed?



Question checklist about your system

• Equilibrium   or    out-of-equilibrium

• How equilibrium is broken?  Inherently Active particles 
yes, you are probably dealing with an active matter problem

• Other conservation laws  (particle number, momentum (wet vs. dry 
systems, …)

• Fundamental symmetries (e.g: to break or not to break the rotational 
symmetry) 

These determines hydrodynamic slow fields 

• Relevant lengths- and time-scales (is there more than hydrodynamics?)



Some fundamental distinctions

Momentum	is	NOT	conserved

DRY	(hydro	interaction	DO	
NOT	matter)

Momentum	is	conserved

WET	(hydro	interactions	DO	
matters)

Crawling	critters

Quasi-2D	suspensions

Relatively	high	Reynolds	
numbers	(birds,	fish)	?
(i.e.:	inertial	efffects	
dominates	viscosity)

3D	suspensions

Especially	at	low	Reynolds	(i.e..	
Stokes	regime)



Some fundamental distinctions

Isotropic

Symmetry
Breaking	

e.g.:	Polar	and	nematic	
collective	motion

Go and look at your system. Typically, many systems show a 
symmetry breaking phase transition  to collective motion as 
parameters (density, motility, enviromental noise, etc…) are changed

• Much more complications pops up almost everywhere – life far 
from equilibrium is complicated !!



One	of	the	simplest	examples:

Flocking	in	DRY	active	matter	systems

Which are these essential ingredients ?

1. Particles are self  propelled

2. A continuous symmetry can be spontaneously broken

A lot of  physics is actually determined 
by these facts alone !!

3. Particles number conservation



• Off  lattice self  propelled particles that move with constant speed

• Local ferromagnetic (or polar) alignment with local neighbors (inside a metric range R0.)

• Environmental white noise

0v
The	Vicsek	model	(“moving	XY	spins”)																	Vicsek	et	al,	PRL	(1995)

Dynamically changing 
interaction matric

In d=2 one may write the VM as



Quench into ordered phase
(coarse-grained density field)

L=16384, ρ=1/8 (32M particles)
Strong noise: disorder, random walks

Low noise: order

Numerical simulations



Gas-like, disordered

Coexistance
ordered bands

liquid-like, 
ordered

The VM phase diagram

Generic to all Vicsek-like 
models with metric 
interactions

1    ordered

disordered

Polar order parameter



Vicsek-like	dry	active	matter	models

Active nematics

Polar rods

€ 

ϑ →ϑ +π



Coarse-graining towards hydrodynamic theory

• Hydrodynamic theories describe the long wavelength, long time 
behavior of the system

• Dynamics of the slow modes of our problem, i.e. the hydrodynamic 
fields. The idea is that all other modes have a much faster dynamics, and 
quickly relax to values determined by the slow modes. i.e. on the 
hydrodynamic timescales are enslaved to the slow modes.

• Slow modes are related to conservation laws and symmetry breaking

• Density r (r, t) and coarse-grained velocity v (r, t)



E.g.:	Toner	&	Tu	theory	for	polar	flocks

advective

continuity eq.

Can be derived either by:

1. Phenomenological hydrodynamics

2. Direct coarse-graining: e.g. Kinetic approaches 
(Boltzmann-Ginzburg-Landau approach)

J.	Toner,	Y.	Tu,	Phys	Rev	Lett	75	4326	(1995);	,	Phys	Rev	E	58	4828	(1998).	

Some kind of material derivative (time + 
convective derivatives), but with extra 
terms since Galileian invariance is broken



Diffusive, viscous terms

E.g.:	Toner	&	Tu	theory	for	polar	flocks

Can be derived either by:

1. Phenomenological hydrodynamics

2. Direct coarse-graining: e.g. Kinetic approaches 
(Boltzmann-Ginzburg-Landau approach)



Spontaneous
symmetry 
breaking

pressure

U v = µ −β v 2( )v
Force term derived by a quartic potential V

E.g.:	Toner	&	Tu	theory	for	polar	flocks



E.g.:	Toner	&	Tu	theory	for	polar	flocks

Can be derived either by:

1. Phenomenological hydrodynamics

2. Direct coarse-graining: e.g. Kinetic approaches 
(Boltzmann-Ginzburg-Landau approach)



• We want to derive a continuous, mesoscopic theory for the relevant hydrodinamic 
fields, like local density r (r, t) and local momentum w (r, t) = r v

Coarse-grained theory  
The Boltzmann-Ginzburg-Landau (BGL) approach 

• Spatial coarse-grain. For instance r (r, t) is the local density at time t computed 
in a volume DV(r) centered on r, which is much smaller than the macroscopic 
dimensions of the system, but large enough to contain many particles. 

€ 

ΔV →dV
• We shall consider scales much larger than the linear size of the volume DV, so 

that it can be treated as infinitesimal.
We are describing the large scale physics of our system 

• We follow the so-called kinetic approach, where we are interested in the single 
particle probability distribution function

which, at a given time t gives the number of particles with orientation between q and q
+ dq which are in the volume dV centered on r
€ 

f r,θ,t( )dVdθ



Our strategy

€ 

f r,θ,t( )dVdθ Single particle PDF

Binary collisions and molechular chaos approximations

(generalized) Boltzmann equation

Fourier space representation: fields (density, momentum , nematic field)  

Truncation strategy a-la Ginzburg-Landau, enslaving of the fast modes

Slow modes, hydrodynamic-like description



€ 

⇒ f r,θ,t + dt( ) − f r,θ,t( ) = −dt v0 e θ( )⋅ ∇f r,θ,t( ) = 0

€ 

f r,θ,t + dt( ) = f r − dt v0e θ( ),θ,t( )

€ 

e θ( ) ≡ cosθ, sinθ( )[ ]

Evolution of  f  for free ballistic particles 
(free Boltzmann equation)

€ 

f r − dt v0 e θ( )dt,θ,t( ) ≈ f r,θ,t( )− dt v0 e θ( )⋅ ∇f r,θ,t( )

we expand to first order

€ 

∂t f r,θ,t( ) + v0 e θ( )⋅ ∇f r,θ,t( ) = 0

And finally, dividing by dt and taking dt as infinitesimal (this means we are 
considering timescales much larger then the microscopic timescale):



Diffusion may be included

Generalized displacement, random v

distribution function (given by dynamics) for v 

Pure ballistic (Vicsek)

Axial diffusion (Active nematics)

d=2 for simplicity



Diffusion may be included



Diffusion may be included

Isotropic diffusion

anisotropic diffusion

Drift



The Boltzmann equation

€ 

Idiff f[ ] = −λ f r,θ,t( ) + λ dθ '
−π

π

∫ f r,θ ',t( ) dξP ξ( )δ2π θ −θ '−ξ( )
−∞

+∞

∫

• Self diffusion term (linear in f )

• P is the noise probability distribution. It has to be symmetric
and, in the following, without loss of generality (due to central 
limit theorem) we will consider it Gaussian with standard 
deviation h € 

P ξ( ) = P −ξ( )

€ 

P ξ( ) =
e−ξ

2 2σ 2

σ 2π

• is a generalized Dirac’s delta with a m p periodic argument

• is the self-diffusion rate; note we can always rescale time units to set  

€ 

λ

€ 

λ =1

Self  diffusion, aka orientational noise



How to treat noise and alignment interactions : 
the dilute gas limit

€ 

ρ0 <<1 d0 ⇒ l =1 ρ0 >> d0

• Orientation dynamics is dominated by (a) self diffusion events (no interaction just 
noise) and (b) binary interactions (aka binary “collisions”). Higher order 
interactions involving more then 2 particles at once can be neglected 

• A further important hypothesis is the total decorrelation of orientations between 
consecutive collisions (this is known as molecular chaos hypothesis), which to a 
certain extent is also justifiable at low densities.    

€ 

f2 r,θ1,θ2,t( ) ≈ f r,θ1,t( ) f r,θ2,t( )



Interaction part

General microscopic rule

Binary collision approximation

Symmetry and isotropy
arbitrary rotation

No chirality, symmetric interactions



The alignment rule

€ 

h Δ( ) =Ψ 0,Δ( ) = Arg 1+ e iΔ[ ] =
Δ
2

=
θ2 −θ1
2

for θ2 −θ1∈ −π,π[ ]

• E.g.: In the Vicsek model, we have simply

so that (you can show it as an exercise)

and we have the half-angle collision rule

€ 

Ψ θ1,θ2( ) = Arg eiθ1 + e iθ 2[ ]

€ 

θ1 →
θ1 +θ2
2

θ2 →
θ1 +θ2
2

for θ2 −θ1∈ −π ,π[ ]

€ 

θ →θ +π
• Other symmetries for the interaction rule change the symmetry of h. For instance, 

nematic symmetry                       requires h and f  to be p periodic, not just 2p .               



The Boltzmann equation - Interaction

Collision part

Collision Kernel

Alignment rule



The collision kernel

• Rotational invariance and lack of chirality requires 

€ 

K θ1,θ2( ) = K θ2 −θ1( ) = K Δ( ) and K Δ( ) = K −Δ( )

• Which is the probability that two particles laying in the same volume 
centered on position r actually collide in a unit time interval ?

• For self-propelled particles the kernel can be computed in the reference 
frame of the first particle, where 

€ 

v2 '= v0 e2 − e1( ) e i = cosθ i , sinθ i( )

• The number of colliding particle per unit density is then given by (using 
elementary trigonometry) 

€ 

K θ2 −θ1( ) = 2d0 v0 e2 − e1 = 4d0 v0 sin
θ2 −θ1
2

= α sin Δ
2

• is a collision rate; note we can always rescale length units to set  

€ 

α

€ 

α =1

Incoming flux

d=2 cross section



Hydrodynamic equations

• In d =2 hydrodynamic fields can be accessed via Fourier coefficients of f

€ 

f r,θ,t( ) =
1

2π
ˆ f k r, t( )e−ikθ

k =−∞

∞

∑ and ˆ f k r, t( ) = dθ f r,θ,t( )eikθ
−π

π

∫

• In particular, for k =0 we have the local density

€ 

ρ r, t( ) ≡ ˆ f 0 r,t( ) = dθ f r,θ,t( )
−π

π

∫

• And for k =1,2 the local momentum and the nematic tensor
€ 

ˆ f k
∗ = ˆ f −k[ ]



Fourier Expansion of  Boltzmann Eq.

with

And complex gradients



Fourier Expansion of  Boltzmann Eq.

k = 0 gives continuity equation

But k > 0 infinite hierarchy, truncation needed

= 0 for k = 0



The Ginzburg-Landau ansatz for self-propelled particles

• At this level, our infinite hierarchy is fully equivalent to the Boltzmann equation 
we started with. Indeed to numerically study it, the best strategy is to numerically 
solve the above hierarchy for a large (but necessarily finite) number of modes.
To proceed further analytically, we need a closure strategy which leaves only with 
the hydrodynamic, relevant modes.

• Our ballistic ansatz assumes that Fourier modes change slowly in space and time 
(this imply our theory will be correct only on large space and time scales), 

• Note that we scale space and time equally, since our propagation mechanism is 
ballistic, linear in time, rather than diffusive or quadratic in time 

(e.g. active nematics)



The Ginzburg-Landau ansatz for self-propelled particles

• Note that the homogeneous disordered solution 
is always a solution of our hierarchy.
Fluctuations can lead to a nonzero k Fourier modes only if one has

€ 

ˆ f 0 = ρ ˆ f k = 0 k > 0

€ 

µk ρ,σ( ) > 0

Suppose             is the first non damped Fourier mode (the order parameter)

Slow field, particle conservation

j = 2 / n

Controlled by symmetry!



Truncation strategy: find the order parameter and enslave higher orders

Linearize around the homogeneous solution

Zero noise limit

Controls the sign of the linear term



Truncation strategy: find the order parameter and enslave higher orders

For k > j

Enslaved to lower order terms

For 

Plug back into eqs. For k <= j    and ignore terms of order 4 or higher



Example: Vicsek model

Full polar symmetry,     n = m = 2



• And after (somehow lengthy calculations) to lowest k ‘s

€ 

k =1 ∂t
ˆ f 1 +

v0

2
˜ ∇ ˆ f 0 + ˜ ∇ ∗ ˆ f 2[ ] = µ1 ρ,σ( ) ˆ f 1 + b1

ˆ f 1
∗ ˆ f 2

€ 

k = 0 ∂t
ˆ f 0 +

v0

2
˜ ∇ ˆ f 1

* + ˜ ∇ ∗ ˆ f 1[ ] = 0

€ 

k = 2 ∂t
ˆ f 2 +

v0

2
˜ ∇ ˆ f 1 = µ2 ρ,σ( ) ˆ f 2 + b2

ˆ f 1 ˆ f 1

2 2 2

2 2

2 22

3 3

3

1 +2 ? = 3

• Computing explicitly (it’s a good exercise) one sees that
while                  changes sign over some critical line   

€ 

µ2 ρ,σ( ) < 0 ∀ρ,η

€ 

µ1 ρ,σ( )

€ 

ρc σ( )

• The term                          can be neglected, and one sees immediately that
is enslaved to    

€ 

∂t
ˆ f 2 << ε 2

€ 

ˆ f 1

€ 

ˆ f 2

€ 

ˆ f 2 ≈
1
µ2

v0

2
˜ ∇ ˆ f 1 − b2

ˆ f 1 ˆ f 1
% 

& ' 
( 

) * 



• This allows to close our equation at the k = 1 level

€ 

∂t
ˆ f 1 = µ1 ρ,σ( )− b1b2

µ2

ˆ f 1
2& 

' 
( 

) 

* 
+ ˆ f 1 −

v0

2
˜ ∇ ρ −

v0
2

4µ2

˜ ∇ ̃  ∇ ∗ ˆ f 1

+
v0 b2

µ2

ˆ f 1 ˜ ∇ ∗ ˆ f 1 +
v0 b1

2µ2

ˆ f 1
∗ ˜ ∇ ̂  f 1

€ 

∂tρ +
v0

2
˜ ∇ ˆ f 1

* + ˜ ∇ ∗ ˆ f 1[ ] = 0

• The equations above are invariant under rotations, in our complex language under 
the transformation

€ 

ˆ f 1 →eiφ ˆ f 1 ˜ ∇ →eiφ ˜ ∇ 1
ˆ f 1
∗ →e− iφ ˆ f 1

∗ ˜ ∇ ∗ →e− iφ ˜ ∇ ∗

€ 

ˆ f 1 ˜ ∇ ̂  f 1
∗

• The only other term (up to third order) allowed by symmetry non present here is



Hydrodynamic equations in vectorial notations

• This equations are formally valid near threshold and for large length and time scales.
The same equations can be derived only from symmetry considerations (Toner & Tu 
theory, J. Toner & Y. Tu, Phys Rev Lett 75 4326 (1995). However, this approach does 
not allow to compute transport coefficients and their fields dependence

€ 

w = ρ v[ ]

• With transport coefficients (in non rescaled units), for the Vicsek case

€ 

σ 0 ≡σ[ ]€ 

∂
∂t
ρ + v0∇⋅ w = 0



Study of  the homogeneous solution

€ 

ρ r, t( ) = ρ0 w r, t( ) = w t( )

• First consider an homogeneous solution (density is fixed in time by particle 
conservations)

€ 

∂t w = µ − ξw2( )w

• First consider an homogeneous solution (density is fixed in time by particle 
conservations). Our hydrodynamic equations simplifies to

€ 

µ = µ ρ,σ( )

€ 

ξ ρ,σ( ) > 0 if µ ρ,σ( ) > 0

This guarantees the dynamics does not blow up, as for large w
the r.h.s. will always turn negative 



Study of  the homogeneous solution – spontaneous symmetry breaking

• There are two possible stationary solution, so that

€ 

w0 = 0
• The first is the disordered, isotropic solution, where

it is stable for µ < 0 and unstable for µ > 0   € 

∂t w = 0

Breaking of a discrete symmetry (ising like)

Breaking of a continuous 
symmetry

€ 
€ 

w0 =
µ
ξ
e

• The second exist only if  µ > 0  , and it is the ordered, 
spontaneously symmetry broken solution.
It is stable in the direction of the modulo (hard mode)
and marginal in the direction of the phase (soft mode) 

Orientation 
(randomly chosen)



Linear stability analysis – spontaneous symmetry breaking

• First understanding is given by linear stability analysis, i.e. linearizing the 
homogeneous equation around the given solution, i.e. considering the small 
perturbation                               and keeping only linear terms in the perturbation.  

€ 

w0 →w0 +δw

• Around the isotropic solution one has:

and the stability depends on the sign of µ (positive: perturbations grows, negative, 
perturbations are damped)

∂t δw = µδw

€ 

• Perturb the ordered solution (assume the solution is oriented in the x direction), and 
decompose the perturbation in the parallel and perpendicular directions

€ 

w0 = µ ξ, 0( ) δw = δw//, δw⊥( )

€ 

• One has

so that perturbations parallel to the ordered solution (in the modulo direction) are 
damped (a hard mode), while perpendicular ones, along the phase (a soft mode) are 
marginal and undamped.   

€ 

∂t δw// = −2µδw// and ∂t δw⊥ = 0



Phase diagram

• We are now able to draw a phase diagram in the (s, r)  plane, with a transition 
from the disordered to the ordered homogeneous phases (black line)

€ 

w0 = 0

€ 

w0 > 0

€ 

4ρ0

€ 

σ

• What we do not know, is whether these phases are stable against spatial 
perturbations (non homogeneous)

€ 

ε ~ w0 =
µ
ξ
⇒ µ ~ ε 2

note that near the transition we have



Linear stability with respect to non-homogeneous perturbations

• First of all, we have to linearize our full set of hydrodynamic equations with 
respect to non-homogeneous small perturbations. 

€ 

ρ0 →ρ0 +δ ρ r,t( ) and w0 →w0 +δw r, t( )

€ 

δ ρ r, t( )dV
S∫ = 0[ ]

€ 

µ '= ∂µ
∂ρ

ξ '= ∂ξ
∂ρ

• Again, this implies discarding all terms higher than linear in the perturbations, to 
get  

€ 

∂
∂t
δρ + v0∇⋅ δw = 0



Linear stability with respect to non-homogeneous perturbations

• To study spatial perturbations, we chose the following ansatz

where s is a complex number. The sign of its real part controls whether 
perturbations grow or are damped in time, thus the stability to such perturbations. 

€ 

δ ρ r, t( ) = δ ρ r( )est and δw r, t( ) = δw r( )est

• Furthermore, we proceed expanding the spatial perturbations in Fourier modes  

with q = ( qx , qy ) being the wavevector (the inverse of a spatial length).

€ 

δ ρ r( ) ~ δ ρq e
− iq ⋅r

q
∑ and δw r( ) ~ δwq e

− iq ⋅r

q
∑

• We will analyze the stability of one mode at the time; in principle one unstable 
mode is enough to destabilize the homogeneous solution. We are particularly 
interested in long-wawelength modes, q << 1

€ 

δ ρ r, t( ) = δ ρq e
st− iq ⋅r and δw r, t( ) = δwq e

st− iq ⋅r



Linear stability with respect to non-homogeneous perturbations

• Our ansatz implies 

so that the linearized equations become

€ 

∇δw r,t( ) = −iqδw r, t( ) ∂tδw r, t( ) = sδw r,t( )
∇δρ r,t( ) = −iqδρ r, t( ) ∂tδρ r, t( ) = sδρ r,t( )

€ 

sδρq = −iv0q⋅ δwq

sδwq = µ − ξw0
2( ) − iγ q⋅ w0( ) −νq2[ ]δwq + iκq w0⋅ δwq( ) +

−w0 2ξw0 + iκq( ) ⋅ δwq( ) + w0 µ'−ξ 'w0
2( ) − iq v0

2

2
* 

+ 
, 

- 

. 
/ δρq

€ 

M q,w0( )δvq = sδvq δvq = δρq , δw[ ]x, δw[ ]y( )
T

• Which is just an eigenvalues problem, 

with the stability being controlled by the sign of the largest eigenvalue

€ 

Re s+ q( )[ ] > 0 ⇒ unstable  mode



Linear stability with respect to non-homogeneous perturbations

• We begin from the disordered phase
which simplifies the linearized equations to

€ 

sδρq = −iv0q⋅ δwq

sδwq = µ −νq2[ ]δwq − iq
v0
2
δρq

€ 

w0 = 0 , µ < 0

• Since d w  and q are parallel, it is possible to simplify, getting the quadratic 
equation

which, for µ < 0 has both eigenvalues with a negative real part for any finite q

So, for µ < 0 the disordered phase is stable against spatial perturbations  



Linear stability with respect to non-homogeneous perturbations

• We now consider the ordered phase

€ 

w0 = µ ξ , µ > 0

• We can write explicitly the 3x3 matrix of our eigenvalue problem in term of the 
angle f between q and w0 : 

€ 

M =

0 −iv0qcosφ −iv0qsinφ

w0 µ'−ξ 'w0
2( ) − i v02 qcosφ −2µ − iγw0qcosφ − q

2ν −iκw0qsinφ

−i v0
2
qsinφ iκw0qsinφ −iγw0qcosφ − q

2ν

( 

) 

* 
* 
* 
* 
* 

+ 

, 

- 
- 
- 
- 
- 

€ 

w0 = w0 , q = q[ ]

The problem greatly simplifies for parallel q and w0 !!



Linear stability with respect to non-homogeneous perturbations

€ 

M =

0 −iv0q 0

w0 µ'−ξ 'w0
2( ) − i v02 q −2µ − iγw0q − q

2ν 0

0 0 −iγw0q − q
2ν

& 

' 

( 
( 
( 

) 

* 

+ 
+ 
+ 

• The eigenvalues are thus 
and the two solution of the quadratic equation with complex coefficients

€ 

s3 = −q2ν < 0

• The largest eigenvalue can be easily computed near threshold µ <<1 and in the 
long wavelength limit q << 1



Linear stability with respect to non-homogeneous perturbations

• Since µ’ > 0 , the largest eigenvalue is positive, and near threshold the 
homogeneous ordered solution is unstable to long-wavelength perturbations along 
the longitudinal direction (w.r.t. order parameter)

E.	Bertin,	M.	Droz,	G.	Grégoire,	Phys	Rev	E,	74,	022101	(2006);		J.	Phys	A	42	445001	(2009)

€ 

w0 = 0

€ 

w0 > 0

€ 

4ρ0

€ 

σ



Example II
Nematic interactions with polar self propulsion:

Self propelled rods

  

€ 

i ~ j if  r i
t −
 r t j <1

€ 

ϑ →ϑ +π

€ 

ζ j
t ζi

t ' ~ δ ijδ tt '

F. Ginelli, F. Peruani, M. Baer, H. Chaté, Phys. Rev. Lett., 104 184502 
(2010).



4 different phases, 2 ordered and 2 disordered

I. Homogeneous long range nematic order
(typical fluctuating HO phase properties)

II. Spontaneous phase segregation, 
nematically ordered bands

III. Long wavelength instability leads to
Band chaos

IV. Disordered

€ 

η



Truncation, due to symmetry and ballistic displacement

€ 

∂t f r,θ,t( ) + v0 e θ( )⋅ ∇f r,θ,t( ) = Idiff f[ ] + Icoll f[ ]

f̂k r, t( ) = dθ f r,θ, t( )eikθ
−π

π

∫

Fourier expansion

Boltzmann equation

Hydrodynamic	equations	(BGL	Kinetic	approach):



Hydrodynamic	equations	(BGL	Kinetic	approach):

€ 

∇ ≡∂x + i∂y and ∇ ≡ ∂x − i∂y Δ ≡ ∇∇ ( )where

€ 

−Re ∇ f1[ ]

Hydrodynamics modes are lowest Fourier modes

€ 

ρ = f0 w = ρ v =
Re f1
Im f1

# 

$ 
% 

& 

' 
( ρQ =

1
2
Re f2 Im f2
Im f2 −Re f2

# 

$ 
% 

& 

' 
( 



§ All	coefficients	have	explicit	dependence	on	local density	and	Fourier	
coefficients	of	noise	distribution

§ a > 0

§ Key	density-dependence	of		μ

With coeffs



Disordered region

Transition region

Threshold instability (transverse)

Homogeneous nematic order

Mesoscopic simulation 
(pseudospectral method)

Microscopic simulations 
(molecular dynamics)





€ 

if f2 ~ ε (since α >> β f2
2)

⇒ f1 ≈ −
1
2α

∇ρ +∇ f2( ) ~ ε 2

And gives active nematic equations

€ 

⇒

∂
∂t
ρ =

1
2α

Δρ +Re ∇ ∇ f2[ ]( )

∂
∂t
f2 = µ ρ( ) − β f2

2( ) f2 +ν 'Δ f2 +
1
4α

∇∇ρ

At threshold, polar order parameter is trivially enslaved 

Slow and not-so-slow fields: the polar order parameter



But, at finite distance from threshold, time scales are more 
complicated. E.g.:

Slow and not-so-slow fields: the polar order parameter

reduces damping 
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