A lens into cognition:
Topology and geometry of neural systems

Evelyn Tang
Max Planck Institute
for Dynamics and Self-Organization

KITP Active20
May 14, 2020




Space

Emergent phenomena across scales

I Brain networks and control

Tang et al., Nature Comm 2017
Tang & Bassett, Rev Mod Phys 2018

Information in fluid flows
Tang & Golestanian, arXiv 2019

Effective learning
Tang et al., Nature Neuro 2019

L —
Topological phases of matter

Tang and Fu, Nature Phys 2015
Tang et al., Phys Rev Lett 2012

Time

>



Learning: an out-of-equilibrium process

y (wm)

Janus sphere with controllable orientation
Golestanian & Ebbens groups, Nat Comm 2015

As we gain understanding and control of active systems,
can we “teach” them what to do?



Machine learning is successful
but opagque and expensive

Common carbon footprint benchmarks

) in Ibs of CO2 equivalent
Cost to train a new model

Roundtrip flight b/w NY and SF (1

passenger) ‘ 1,984
Human life (avg. 1 year) I 11,023
Strubell, Ganesh & McCallum, American life (avg. 1 year) I 36156

Proc. 57" Comp. Ling. 2019 US car including fuel (avg. 1
lifetime) 126,000
Transformer (213M parameters) w/
neural architecture search

Huge number of parameters




Biological learning is quick and efficient

A baby who sees
their parent
use cell phones

What are underlying principles of learning?



Probing learning in humans is difficult

No ground up theory for cognition:
we can model neuron dynamics,
but coarse-graining methods lacking

No controlled experiments ]

Sample sizes are small

Data is noisy; has side effects
from other physiological processes

What features in neural data can distinguish
between cognitive states?



Coarse-grained feature
of a multi-dimensional dataset

Learning engages complex dynamics:
coordination over different modalities
including sensory, attentional, memory

Given noisy data, won'’t study specific dynamics

Underfitting

Just right!

Hypothesis: there exists a suitable dimension
for computational complexity

overfitting



Neural data can be separated
along a dimension

Cats

stndus Sponse O
200 1200ms

Dogs

Trained to categorize cats and dogs
Freedman et al., Science 2001

Activity in lateral prefrontal cortex of monkeys could be classified
according to animal type



Effective dimension can be lower
than that of measurement space
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Probe the appropriate dimension for successful learning



Combinatorial approach
to estimate dimension for noisy data

Given n types of data (shapes): OA * n categories
Assign binary labels (blue or red): . A * 2™ ways
X X
1D: N A* 7A* Their linear separability
(O 0] (over different assignments)
(@ O . . .
estimates the dimension
>y >y
X X
: Unlike spectral analysis:
> .\\\*' © */'/ does no!tode end onya metric
@) \\ .// A P
>y ‘ >y Rigotti et al., Nature 2013



Experiment with complex cognitive stimuli

Computer-generated shapes with similar statistical properties

$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 $12
\ /
SXXAN_

—

$1 Mattar et al., Net Neuro 2017

Shapes have value drawn from a Gaussian with fixed mean

Participants had to associate dollar values to each new shape



Adult participants learned the values of
these shapes through feedback

ﬁ 3 training sessions a day,
over 4 days
$8.23
"~ DAY1 DAY2 DAY3 DAY4
frals 396 1188 1584

250 P Trial t+1

Trial t




Their neural patterns scanned using fMRI
throughout the experiment

Region A H LA L L

Each session: 140 pairs shown
Region B JWMM“ |
Blood-oxygen-level dependent

Region C |tk iel ) L activation measured

Coarse-grained approach:
83 regions parcellation of whole-brain




Neural responses across all regions
form a geometric representation

140 shapes each contribute a point  For n categories:

in data cloud 2™ ways to assign binary labels
Region B
A X %
4 A

\
.. o X *,’/
\ o
: o\ Q- A
> Region A \ /
> Yy %

Region C

Average separability over hyperplanes is a proxy for dimension —
large combinatorics allows method to be robust to noise



% correct

Fast learners have a higher dimensional
representation of neural data
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physical dimension

Higher dimensional neural representations are
associated with effective learning on this task



Test result reliability using a null model

Without theory, and without
repeated experiments to fit —

/ need to identify “no result’

Obtain a baseline

comparison from similar data
without task information

Region B
A

~ 1. Shuffle task labels of data points
4/ . . 2. Repeat analysis

> Region A

Region C




Null model shows result is significant

Null data (1000
r=056 bootstrapped samples)

065 p <0.001 T e 100

Separability dimension on Day 4

063 ¢« & .
0 9 04 1
Response accuracy end of Day 1 Corr btw dimension and accuracy



Null data also shows

smaller dimension for fast learners
Null data:
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Larger m more reliable
from averaging over 2™

Corr btw dimension and accuracy

2 4 6 8 m
Number of stimuli out of 12

Negative correlation between null data dimension and learning accuracy



Fast learners have higher task-based
dimension and lower embedding dimension

Task data: ]W In 0 - ; v [W
> > >
o A* Underfitting * Just right! X overfitting X
Efficient Inefficient
P P £ P
* % A¥ * *
(0] (0]
A O
o A % A X A A K
o) 0 A © A
> y > y >y >y
Task data dim ~ 3 Shuffled data dim < 2 Task data dim < 3 Shuffled data dim ~ 2

Fast learners have an efficient representation:
high ratio of information-coding to resources used

Tang, Mattar, Giusti, Lydon-Staley, Thompson-Schill & Bassett, Nature Neuroscience 2019



Analogous results seen in data manifolds
of neural networks

i. .
2 1k \'
‘] A Y Foeteh
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" _4ima - Analysis of the shape of manifold
,,_,—‘.'. L representations in neural networks

behave in different ways with training

r/’: . ) Two kinds of dimensionality that can
— e 1,

v"., -— . — Chung, Lee & Sompolinsky, PRX 2018



Virtual lesioning: data-driven approach to
identify which brain regions contribute most

Brain regions are removed one at a time: result recalculated
Largest change (in correlation of accuracy with dimension) due to:

Left hippocampus Right temporal pole
Associated with rapid learning Represents information about
of stimulus associations abstract conceptual properties

(such as value)
Squire, Psych Rev 1992

Peelen & Caramazza,

J Neuroscience 2012



Recapitulation of effect
on smaller voxel-level in some regions

Study 5 regions in each hemisphere with 300 (of fewer) voxels

0.66 —Left ACC .
—Left V1 °
0.655 | —Right PFus
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Response accuracy end of Day 1

Left anterior cingulate cortex has strongest result and known role in
reward-based learning Bush et al., PNAS 2002

Followed by left V1 and right posterior fusiform



The geometry of neural activity
reflects cognitive performance

Fast learners have higher dimensional representations
of neural activity.

This allows objects of different value to be more easily
distinguished.

Fast learners also have lower embedding dimension: hence
they have more efficient representations with a high ratio of
information-coding to resources used.
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How does brain structure subserve
dynamics and function?

Control theory and dynamical models
to probe the role of connectivity;

and in changes across development

Towards understanding function: e.g.
children are more spontaneous while
adults are better at cognitive control




Network control theory models dynamics
In heterogeneous real-world systems

X

A a Desired final
A state
N 7
Initial
state > X
X, X3

Liu et al., Nature 2011



Models the driving of dynamical changes
across neurons or neural systems

External Input Internal Control

Stimulation Cognitive Control

Neurofeedback Homeostasis

Bassett et al., Ann Rev Biomed Eng 2017



Topology of brain connectivity mapped
with non-invasive neuroimaging

|dentify brain regions White matter pathways inferred
on the mesoscale from movement Of water
molecules diffusing along tracts

Glasser et al., Nature 2016 Tuch et al., Neuroimage 1997



Build brain network which estimates
strength of connections between regions

Adjacency matrix

brain regions
sauljweaJ)s Jo Jaquinu

brain regions

We represent the pattern of white matter tracts between brain regions
as an undirected, weighted adjacency matrix

Bullmore & Sporns, Nat Rev Neurosci 2009



Linear dynamical model
+ Input Into system

X / \
3 Uncontrolled trajectory

== Controlled trajectory Regions |nput into
M of input system
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Input into systems
defines an energy landscape e

t

b1 U, Ht

x(t+1) = Ax(t) + Bu(¢)

After T steps,

u(T —1)] Q
x(T) = Cr ; Cr:=|B AB ... AT7IB].
= u ( O ) _ ‘ i / yir .
\ . Depends on brain network £ &4

Input 'energy and input regions (structural)

Linearize
around
origin

E,T) =Y [ju(t)|?




Structural network properties determine
the minimum input energy

x(t+ 1) = Ax(t) + Bu(t) Minimum input energy

u(T — 1) u* (T —1)]
x(T)=Cr | ; ; = Cr(CrCrp) %y
- u0) | ui(0)
Kailath,

Linear Systems 1980

T-1
EX(T) =Y |lu*(8)|* = x}(CrC]) ~'x
=0 |
| T-1
Gramian Wy := CrCy = Z A'BBT(AT)
t=0




Network connectivity and strength
determine possible dynamical transitions

T—-1

Minimum input energy  E*(T) = x;Wy'x;; Wrpi= ) ABBT(AT)
t=0

When x; is an eigenvector of W with eigenvalue \, E*(T) = A~

Average input energy (over all {xy}): Tr(W™1) T — o0 e
Ability to control with least average energy: Tr(W) Tr(W;') > W)
T

\ ) Pasqualetti et al., IEEE TCNS 2014
" Energy £ Gu et al., Nat Comm 2015

v;: j! eigenvector of 4 with eigenvalue ¢;.
\.'/'Xz If v;; is small, then j™ mode is poorly
controllable from i (extension of PBH test).

“Worst-case” energy from E*(T) < A\~ (Wr) l
Ability for modal control of most costly transition from i: Z(l — & (A)v;;
J



Use network control metrics
on cohort of 882 youth from 8 to 22 years

Diffusion data from Philadelphia Neurodevelopmental Cohort a
Roalf et al., Neuroimage 2016 !
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Do brain networks show increasing control with age?



Topology of brain networks
supports more dynamical transitions

Individual
brain networks

e

sfials
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0.98 |

Scrambled networks
preserving node

Mean modal controllability
per subject

\/xz strength
\ Preserving node
Coarse metrics 0.92 ¢ degree
across whole-brain . . . .
10 20 30

Mean average controllability per subject



Mean modal controllability

Brain networks increasingly support
diverse dynamics with age
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Older subjects have a larger range of possible dynamics
from low to high energy transitions: increased specialization




What can a finer look tell us?

100 10" 102 103 0.21 0.15
Regional average controllability Correlation with age

Regions high in average controllability increase in controllability with age



Regional specialization of control with age
or “super-controllers”

Correlation with age

%2 07 09 10
Regional modal controllability Correlation with age

Seen in both average and modal control regions



Which brain regions have high control
for effective cognition?

Subjects with high subcortical controllability
exhibit poorer cognitive performance
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Subjects participated in S -4 - " Subcortical regions
battery of cognitive tests 3 0=14x 10

100 200

Mean average controllability of regions (per individual)

Consistent with evidence that segregation between neural systems
is associated with improved cognitive ability Wig, TICS 2017



Synchronous neural activity
IS often associated with pathology

Recording from a scalp electrode during a seizure

Taylor et al.,
Front Neurosci,
2015




Synchronizability measures network ability
to sustain globally similar dynamics

Synchronous state described by Laplacian connectivity matrix
and its eigenvalues {4} B o

Smaller spread of {A;}:

Master 4 more synchronizable
stability
function })—.—0 Asynchrony
>
>—H Synchrony
Region of stability

Pecora and Carroll, Phys Rev Lett 1998

Do brain networks have less susceptibility to synchronous
(potentially pathological) dynamics with age?



Topology of brain networks
IS less synchronizable

Mean modal controllability
|
0.96 0.98
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Brain networks less vulnerable to synchrony
with development

r=-0.37
p<1x10-16

N

Older subjects show
less susceptibility to
synchronous dynamics

—
1

Synchronizability

Age

Quantifies intuitions on emerging control and
decreased susceptibility to global inputs
with age




A phenomenological wiring rule that
promotes healthy development?

If these findings suggest a mechanism for development

Rewire brain networks for E 1 Brain data \
higher controllability and ——
lower synchronizability [ y Forward
- modeling
8
®©
©
g Backwards
- modeling
o
< 0.8
0 40

Mean average controllability

Simulations recapitulate developmental arc Tang et al., Nat Comm 2017



Topology of brain structure and
changes across development

We develop dynamical models that link changes in white
matter to predicted dynamics and function.

Our results formalize intuitions about increasing specialization
of brain connectivity across development, at the expense of
greater flexibility.

We identify regional changes and drivers of cognition.
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