Tutorial: topological solitons

Ivan I. Smalyukh, CU-Boulder

Topological solitons ...

Sohn, Liu & Smalyukh, Nature Comm 10, 4744 (2019).

Tai & Smalyukh, Science 365, 1449-1453 (2019).

Sohn & Smalyukh, PNAS 117, 6437-6445 (2020).

Topology, Poincare Theorem

Every closed simply connected (no holes) 2D surface is homeomorphic to a sphere

Simply connected surfaces (no holes)

Not simply connected

Topology & topological soliton

• Topology – properties preserved under continuous deformations.

Sphere-sphere maps are well understood

	π1	π2	π3	π4	π ₅
S 0	0	0	0	0	0
S ¹	z	0	0	0	0
S ²	0	z	z	Z 2	Z 2
S ³	0	0	z	Z 2	Z 2
S ⁴	0	0	0	z	Z 2
S ⁵	0	0	0	0	z

two maps connected by continuous path are said to be homotopic

- Spheres as OP Spaces and defectsurrounding surfaces
- i-th homotopy group π_i(Sⁿ) ways the *i*-dimensional sphere Sⁱ can be mapped into *n*-dimensional sphere Sⁿ

Homotopy theory (sphere-sphere maps) of defects

• Singular defects

 \rightarrow Spheres as order-parameter Spaces and defect-surrounding surfaces \rightarrow i-th homotopy group $\pi_i(S^n)$ – ways the field on S^i can be mapped to S^n

Topological solitons – continuous but topologically nontrivial field configurations

- Mapping the field along x into S¹ fully covers it!
- equivalent to the S¹ surrounding space when the far-field is uniform!

Directors versus vectors & twist walls as topological 1D solitons

Homotopy theory and topological solitons

m(r): $r \in$ configuration space $\rightarrow m \in$ order-parameter space

- 1D kink or wall ($\pi_1(\mathbb{S}^1) = \mathbb{Z}$)
 - \succ Configuration space \mathbb{R}^1
 - $\succ \mathbb{R}^1 \cong \mathbb{S}^1$ if far-field uniform
 - Examples: domain walls in ferromagnets with M constrained in a plane (S¹)
- 2D skyrmion ($\pi_2(\mathbb{S}^2) = \mathbb{Z}$)
 - $\succ \mathbb{R}^2 \cong \mathbb{S}^2$ when the far-field is uniform
 - 2D soliton in a ferromagnet with *M* taking all possible orientations on S²

$$N_{\rm sk} = \frac{1}{4\pi} \int dx dy \boldsymbol{m}(\boldsymbol{r}) \cdot \left(\partial_x \boldsymbol{m}(\boldsymbol{r}) \times \partial_y \boldsymbol{m}(\boldsymbol{r})\right)$$

http://iht.univ.kiev.ua/Kolezhuk

Sphere-sphere maps, homotopy theory

→Derrick-Hobart (theorem): 2D, 3D solitons cannot be stable (within a simplest model) →Skyrme, high energy physicis: stabilization by adding nonlinear terms (nonlinear sigma model)

Liquid crystals (LCs)

- Ordered fluid with long-range orientational order
- Director n(r)

• LC ferromagnets

- Vector m(r)
- Polar switching by weak fields

Free energy minimization

 \rightarrow Overcoming constrains of Derrick-Hobart (theorem): chiral terms

• Frank-Oseen free energy of chiral ferromagnetic LCs

$$F_{\rm LCF} = \int_{\Omega} d^3 r \left\{ \frac{K_{11}}{2} (\nabla \cdot \boldsymbol{m})^2 + \frac{K_{22}}{2} \left[\boldsymbol{m} \cdot (\nabla \times \boldsymbol{m}) + \frac{2\pi}{p} \right]^2 + \frac{K_{33}}{2} [\boldsymbol{m} \times (\nabla \times \boldsymbol{m})]^2 \right\} - \underbrace{\frac{W}{2}}_{\substack{\text{splay}}} \int_{\substack{\text{d} \\ \text{twist}}} d^2 r (\boldsymbol{m} \cdot \boldsymbol{m}_0)^2 .$$

$$F_{\text{dielectric}} = -\frac{\varepsilon_0 \Delta \varepsilon}{2} \int_{\Omega} d^3 \boldsymbol{r} (\boldsymbol{m} \cdot \boldsymbol{E})^2 \,. \qquad F_{\text{magnetic}} = -\mu_0 M \int_{\Omega} d^3 \boldsymbol{r} (\boldsymbol{H} \cdot \boldsymbol{m}) \,.$$

• Hamiltonian for chiral ferromagnets

$$H = \int d^3 \boldsymbol{r} \left\{ \frac{J}{2} (\nabla \boldsymbol{m})^2 + D \boldsymbol{m} \cdot (\nabla \times \boldsymbol{m}) - \mu_0 M_s (\boldsymbol{H} \cdot \boldsymbol{m}) \right\}$$

- Derrick's theorem: 2D, 3D solitons cannot be stable
- Stabilization by
 - Chirality
 - Boundary effects
- Elastic anisotropy
- External fields

Landau-de Gennes free energy

• Tensor order-parameter

$$Q_{ij} = \frac{S}{2} \left(3n_i n_j - \delta_{ij} \right) + \frac{P}{2} \left(e_i^{(1)} e_j^{(1)} - e_i^{(2)} e_j^{(2)} \right)$$

• Defect and disorder requires Q-tensor description of nematics.

$$F = F_t + F_e + F_s$$

= $\int_{\Omega} d^3 r \frac{1}{2} a(T - T^*) \operatorname{Tr}(Q^2) + \frac{1}{3} B \operatorname{Tr}(Q^3) + \frac{1}{4} C[\operatorname{Tr}(Q^2)]^2 \quad s$
+ $\int_{\Omega} d^3 r \frac{L}{2} \frac{\partial Q_{ij}}{\partial x_k} \frac{\partial Q_{ij}}{\partial x_k} + 2q_0 L \varepsilon_{ikl} Q_{ij} \frac{\partial Q_{ij}}{\partial x_k}$
+ $\int_{\partial \Omega} d^2 r \frac{W}{2} (Q_{ij} - Q_{ij}^0)^2$

1D walls $(\pi_1(\mathbb{S}^1) = \mathbb{Z})$ in LCs

- 1D twisted walls
 - Chiral LCs with vertical BCs

• Optical imaging

Cholesteric finger $\pi_1(\mathbb{S}^1)$ defects • Chiral LCs with strong vertical BCs ٠ S 0.5 0.45 0.4 0.35 **Optical imaging** • 10^{3} T/dM10¹ 10⁰ 20 µm 0.1 0.2 0.3 0.4 0.5 d/p14

10 µm

JSB Tai, II Smalyukh, accepted by Phys. Rev. E

2D skyrmions ($\pi_2(\mathbb{S}^2) = \mathbb{Z}$) in LCs

• 2D skyrmion & Toron

• Preimages

Preimage (inverse image) of $m(r): r \rightarrow m$ map Region of a constant m

2D skyrmions in LCs (cont.)

• 2D skyrmion

• Elementary toron

• Skyrmion/toron hybrid

High-charge skyrmions in LCs

- Can we have $|N_{sk}| > 1$?
- 1. Multiple π -twist

2. Clusters of skyrmions skyrmions repel

D Foster, C Kind, PJ Ackerman, JSB Tai, MR Dennis, II Smalyukh, *Nature Physics* **15**, 655 (2019).

High-chrage "skyrmion bags" in LCs

D Foster, C Kind, PJ Ackerman, JSB Tai, MR Dennis, II Smalyukh, Nature Physics 15, 655 (2019).

Field-controlled dynamics of skyrmions & monopoles (cont.)

Field-controlled dynamics of skyrmions & monopoles (cont.)

3D Hopf solitons

				1	
	π_1	π_2	π_3	π_4	π_5
\$ ⁰	0	0	0	0	0
\mathbb{S}^1	Z	0	0	0	0
\$ ²	0	Z	Z	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{S}^3	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{S}^4	0	0	0	Z	\mathbb{Z}_2

- Hopf fibration (Heinz Hopf 1931) A map $\mathbb{S}^3 \to \mathbb{S}^2$ $\mathbb{R}^3 \cong \mathbb{S}^3$ when far-field uniform

 - A circle in $\mathbb{S}^3 \to A$ point on \mathbb{S}^2
 - Circles are linked (topology)

Stereographic projection

- Stereographic Projection of S² onto a 2D plane
- Stereographic Projection of S³ into the 3D space

Hopf fibration

Hopf fibration

3D Hopf solitons

Q = 1

- $\pi_3(\mathbb{S}^2) = \mathbb{Z}$
- $\mathbb{R}^3 \cong \mathbb{S}^3$ when far-field uniform
- Hopf index $Q \in \mathbb{Z}$
- Ansatz form Hopf fibration

• Topological charge = Linking number of preimages $Q = \Sigma C/2$

Q = 2

PJ Ackerman and II Smalyukh. *Nat. Mat.* **16**, 426 (2017) PJ Ackerman and II Smalyukh. *Phys. Rev. X* (2017) JSB Tai, PJ Ackerman, II Smalyukh, *PNAS U.S.A.* **115**, 921 (2018).²⁵

3D solitons, Numerical Modeling & Analysis

Topological solitons with Hopf index Q=1

→Filling localized space with all preimages:

 \rightarrow Preimages of points with the same polar angle tile into tori \rightarrow Nested tori fill the 3D space

P.J. Ackerman & I.I. Smalyukh. Nature Mater. 16, 426-432 (2017)

Nested tori of linked preimages

Numerical modeling versus experiment

Q=-1 solitons & magnetic control of 2D crystals \rightarrow Linking of preimages: Q=-1 **ς**2 m_0 m \rightarrow Experimental & simulated 2D arrays of 3D solitons \rightarrow Control by applying **B** \rightarrow Shrink (expand) when **B** is parallel (antiparallel) to **M**₀

P. J. Ackerman and I. I. Smalyukh. Phys Rev X 7, 011006 (2017)

Experiments: beyond elementary Hopf solitons

Sphere-sphere maps, homotopy theory

	π_1	π_2	π_3	π_4	π_5
\$⁰	0	0	0	0	0
\mathbb{S}^1	\mathbb{Z}	0	0	0	0
\mathbb{S}^2	0	Z	Z	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{S}^3	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{S}^4	0	0	0	Z	\mathbb{Z}_2
\mathbb{S}^5	0	0	0	0	0

 $\pi_3(S^2)=Z$ solitons

Like

Diversity of knot topologies

• All knots & links are topologically distinct and can lead to different realizations of solitons & vortices in physics fields

Diversity of multi-component link topologies

Topological transformation of hopfions (E field)

Video speed 2X

• Initial state:

$$Q = -2$$

$$F_{\text{electric}} = -\frac{\varepsilon_0 \Delta \varepsilon}{2} \int d^3 \boldsymbol{r} (\boldsymbol{E} \cdot \boldsymbol{m})^2 \,, \Delta \varepsilon < 0$$

- What happens to the intermediate state?
- Does topology switch at higher voltage?

U=0VQ = -210 µm

Visualization of the Q= -2 complex hopfion

JSB Tai, PJ Ackerman, II Smalyukh, *PNAS U.S.A.* **115**, 921 (2018). 36

H - induced transformations

JSB Tai, PJ Ackerman, II Smalyukh, *PNAS U.S.A.* **115**, 921 (2018).

Topological & structural stability dependence on d/p & H

JSB Tai, PJ Ackerman, II Smalyukh, PNAS U.S.A. 115, 921 (2018).

Heliknoton – solitons in a helical background

• Linking of preimage in $oldsymbol{n}(oldsymbol{r})$

• Knotted Singular vortex lines in $\chi(r)$ & au(r)

 Dual nature – Skyrme's knot soliton & Kelvin's vortex knots

JSB Tai, II Smalyukh, *Science* **365**, 1449 (2019).

Heliknotons – particle-like

• Emerge with an applied E field along χ_0

• Brownian motion

JSB Tai, II Smalyukh, *Science* **365**, 1449 (2019).

Heliknotons – self-assembled crystals

• Self-assemble into crystals

• Various assembled crystals

JSB Tai, II Smalyukh, *Science* **365**, 1449 (2019).

Heliknoton – 3D crystals

• 3D localized and 3D interaction

JSB Tai, II Smalyukh, *Science* **365**, 1449 (2019).

Heliknoton – high degree

Q = 2

Q = 3

z,χ₀ L→x

• Larger solitons observed

Knots and solitons – history

Gauss

• Knots in fields as particles!!!

Lord Kelvin

- Models of atoms as knots
- knot theory

T. Skyrme

- Solitons stabilized by highorder terms (Skyrme model)
- Topological solitons as atomic nuclei

Ed Witten

 Skyrme model as effective model of QCD 44

Heliknoton – high degree solitons

JSB Tai, II Smalyukh (2020).

3D Hopf solitons in chiral magnets

• Magnetic hopfion in a nanodisk

 Streamlines of emergent field form linked closed loops -> Hopf fibration

$$(\boldsymbol{B}_{\mathrm{em}})_i \equiv \hbar \varepsilon^{ijk} \boldsymbol{m} \cdot (\partial_j \boldsymbol{m} \times \partial_k \boldsymbol{m})/2$$

JSB Tai, II Smalyukh, *Phys. Rev. Lett.* **121**, 187201 (2018).

Magnetic heliknoton

R Voinescu, JSB Tai, II Smalyukh, (2020).

Magnetic heliknoton – preimages

R. Voinescu, JSB Tai, II Smalyukh, (2020).

PJ Ackerman, II Smalyukh, Nat. Mater. 16, 436 (2017).

Heliknoton – conical background

R Voinescu, JSB Tai, II Smalyukh (2020).

Topological solitons in condensed matters

